缺氧性神经炎症在多发性硬化发病机制中的作用。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Bethany Y A Hollingworth, Patrick N Pallier, Stuart I Jenkins, Ruoli Chen
{"title":"缺氧性神经炎症在多发性硬化发病机制中的作用。","authors":"Bethany Y A Hollingworth, Patrick N Pallier, Stuart I Jenkins, Ruoli Chen","doi":"10.3390/brainsci15030248","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheath around the central nervous system axons, leading to neurological dysfunction. Although the initial damage is driven by inflammation, hypoxia has been reported in several brain regions of MS patients, but the significance of this for prognosis and treatment remains unclear. Neuroinflammation can induce hypoxia, and hypoxia can induce and exacerbate neuroinflammation, forming a vicious cycle. Within MS lesions, demyelination is often followed by remyelination, which may restore neurological function. However, demyelinated axons are vulnerable to damage, which leads to the accumulation of the permanent neurological dysfunction typical in MS, with this vulnerability heightened during hypoxia. Clinically approved therapies for MS are immunomodulatory, which can reduce relapse frequency/severity, but there is a lack of pro-regenerative therapies for MS, for example promoting remyelination. All tissues have protective responses to hypoxia, which may be relevant to MS lesions, especially during remyelinating episodes. When oxygen levels are reduced in the brain, constitutively expressed hypoxia-inducible factors (HIF) are stabilised, upregulating hundreds of genes, including neuroprotective factors. Furthermore, astrocytes upregulate heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) in the early stage of MS. HB-EGF promotes protective mechanisms and induces oligodendrocyte and neuron differentiation and survival. This review article outlines the neuroinflammation and hypoxia cycle in MS pathology and identifies potential therapeutic targets to limit neurodegeneration and/or promote regeneration. Both HIF and HB-EGF signalling pathways induce endogenous protection mechanisms in the CNS, promoting neuroprotection and remyelination directly, but also indirectly by modulating the immune response in MS. Promoting such endogenous protective signalling pathways could be an effective therapy for MS patients.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoxic Neuroinflammation in the Pathogenesis of Multiple Sclerosis.\",\"authors\":\"Bethany Y A Hollingworth, Patrick N Pallier, Stuart I Jenkins, Ruoli Chen\",\"doi\":\"10.3390/brainsci15030248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheath around the central nervous system axons, leading to neurological dysfunction. Although the initial damage is driven by inflammation, hypoxia has been reported in several brain regions of MS patients, but the significance of this for prognosis and treatment remains unclear. Neuroinflammation can induce hypoxia, and hypoxia can induce and exacerbate neuroinflammation, forming a vicious cycle. Within MS lesions, demyelination is often followed by remyelination, which may restore neurological function. However, demyelinated axons are vulnerable to damage, which leads to the accumulation of the permanent neurological dysfunction typical in MS, with this vulnerability heightened during hypoxia. Clinically approved therapies for MS are immunomodulatory, which can reduce relapse frequency/severity, but there is a lack of pro-regenerative therapies for MS, for example promoting remyelination. All tissues have protective responses to hypoxia, which may be relevant to MS lesions, especially during remyelinating episodes. When oxygen levels are reduced in the brain, constitutively expressed hypoxia-inducible factors (HIF) are stabilised, upregulating hundreds of genes, including neuroprotective factors. Furthermore, astrocytes upregulate heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) in the early stage of MS. HB-EGF promotes protective mechanisms and induces oligodendrocyte and neuron differentiation and survival. This review article outlines the neuroinflammation and hypoxia cycle in MS pathology and identifies potential therapeutic targets to limit neurodegeneration and/or promote regeneration. Both HIF and HB-EGF signalling pathways induce endogenous protection mechanisms in the CNS, promoting neuroprotection and remyelination directly, but also indirectly by modulating the immune response in MS. Promoting such endogenous protective signalling pathways could be an effective therapy for MS patients.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15030248\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030248","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种自身免疫性疾病,损害中枢神经系统轴突周围的髓鞘,导致神经功能障碍。虽然最初的损伤是由炎症引起的,但在多发性硬化症患者的几个脑区也有缺氧的报道,但这对预后和治疗的意义尚不清楚。神经炎症可诱发缺氧,而缺氧又可诱发和加重神经炎症,形成恶性循环。在多发性硬化症的病变中,脱髓鞘通常伴随着髓鞘再生,这可能会恢复神经功能。然而,脱髓鞘轴突容易受到损伤,这导致MS典型的永久性神经功能障碍的积累,这种脆弱性在缺氧时加剧。临床批准的多发性硬化症治疗是免疫调节疗法,可以减少复发频率/严重程度,但缺乏促再生疗法,例如促进髓鞘再生。所有组织对缺氧都有保护反应,这可能与MS病变有关,特别是在髓鞘再生发作期间。当大脑中的氧气水平降低时,组成性表达的缺氧诱导因子(HIF)稳定下来,上调数百个基因,包括神经保护因子。此外,星形胶质细胞在ms早期上调肝素结合表皮生长因子(EGF)样生长因子(HB-EGF), HB-EGF促进保护机制,诱导少突胶质细胞和神经元的分化和存活。这篇综述文章概述了多发性硬化症病理中的神经炎症和缺氧循环,并确定了限制神经变性和/或促进再生的潜在治疗靶点。HIF和HB-EGF信号通路均可诱导中枢神经系统内源性保护机制,直接促进神经保护和髓鞘再生,但也可通过调节MS的免疫反应间接促进这种内源性保护信号通路可能是MS患者的有效治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoxic Neuroinflammation in the Pathogenesis of Multiple Sclerosis.

Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheath around the central nervous system axons, leading to neurological dysfunction. Although the initial damage is driven by inflammation, hypoxia has been reported in several brain regions of MS patients, but the significance of this for prognosis and treatment remains unclear. Neuroinflammation can induce hypoxia, and hypoxia can induce and exacerbate neuroinflammation, forming a vicious cycle. Within MS lesions, demyelination is often followed by remyelination, which may restore neurological function. However, demyelinated axons are vulnerable to damage, which leads to the accumulation of the permanent neurological dysfunction typical in MS, with this vulnerability heightened during hypoxia. Clinically approved therapies for MS are immunomodulatory, which can reduce relapse frequency/severity, but there is a lack of pro-regenerative therapies for MS, for example promoting remyelination. All tissues have protective responses to hypoxia, which may be relevant to MS lesions, especially during remyelinating episodes. When oxygen levels are reduced in the brain, constitutively expressed hypoxia-inducible factors (HIF) are stabilised, upregulating hundreds of genes, including neuroprotective factors. Furthermore, astrocytes upregulate heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) in the early stage of MS. HB-EGF promotes protective mechanisms and induces oligodendrocyte and neuron differentiation and survival. This review article outlines the neuroinflammation and hypoxia cycle in MS pathology and identifies potential therapeutic targets to limit neurodegeneration and/or promote regeneration. Both HIF and HB-EGF signalling pathways induce endogenous protection mechanisms in the CNS, promoting neuroprotection and remyelination directly, but also indirectly by modulating the immune response in MS. Promoting such endogenous protective signalling pathways could be an effective therapy for MS patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信