揭示肠道菌群和饮食在多发性硬化症中的重要作用。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Amina Džidić Krivić, Emir Begagić, Semir Hadžić, Amir Bećirović, Emir Bećirović, Harisa Hibić, Lejla Tandir Lihić, Samra Kadić Vukas, Hakija Bečulić, Tarik Kasapović, Mirza Pojskić
{"title":"揭示肠道菌群和饮食在多发性硬化症中的重要作用。","authors":"Amina Džidić Krivić, Emir Begagić, Semir Hadžić, Amir Bećirović, Emir Bećirović, Harisa Hibić, Lejla Tandir Lihić, Samra Kadić Vukas, Hakija Bečulić, Tarik Kasapović, Mirza Pojskić","doi":"10.3390/brainsci15030253","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis.\",\"authors\":\"Amina Džidić Krivić, Emir Begagić, Semir Hadžić, Amir Bećirović, Emir Bećirović, Harisa Hibić, Lejla Tandir Lihić, Samra Kadić Vukas, Hakija Bečulić, Tarik Kasapović, Mirza Pojskić\",\"doi\":\"10.3390/brainsci15030253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15030253\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种中枢神经系统(CNS)的慢性炎症性疾病,以神经退行性变、轴突损伤、脱髓鞘和炎症为特征。最近,肠道生态失调与多发性硬化症和其他自身免疫性疾病有关。也就是说,肠道微生物群通过影响免疫细胞的发育、细胞因子的产生和肠道屏障的完整性,在调节免疫功能方面起着至关重要的作用。虽然平衡的微生物群促进免疫耐受,但生态失调会破坏免疫调节,破坏肠道通透性,并增加自身免疫性疾病的风险。饮食是塑造肠道菌群和调节免疫反应的关键因素。研究表明,富含饱和脂肪的高脂肪饮食与疾病进展有关。相反,富含水果、酸奶和豆类的饮食可能会降低MS发病和进展的风险。特定的饮食干预,如地中海饮食(MD)和生酮饮食,已经显示出减少炎症、支持神经保护和促进中枢神经系统修复的潜力。益生菌通过恢复微生物平衡,也可能有助于缓解多发性硬化症的免疫功能障碍,针对肠道微生物群的个性化饮食策略有望通过调节免疫反应和减缓疾病进展来控制多发性硬化症。优化营养摄入和采用抗炎饮食可改善疾病控制和生活质量。了解肠道免疫相互作用对于为多发性硬化症患者开发量身定制的营养疗法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis.

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信