Amanda Gollo Bertollo, Camila Ferreira Puntel, Brunna Varela da Silva, Marcio Martins, Margarete Dulce Bagatini, Zuleide Maria Ignácio
{"title":"神经发育障碍和情绪障碍之间的神经生物学关系。","authors":"Amanda Gollo Bertollo, Camila Ferreira Puntel, Brunna Varela da Silva, Marcio Martins, Margarete Dulce Bagatini, Zuleide Maria Ignácio","doi":"10.3390/brainsci15030307","DOIUrl":null,"url":null,"abstract":"<p><p>According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurobiological Relationships Between Neurodevelopmental Disorders and Mood Disorders.\",\"authors\":\"Amanda Gollo Bertollo, Camila Ferreira Puntel, Brunna Varela da Silva, Marcio Martins, Margarete Dulce Bagatini, Zuleide Maria Ignácio\",\"doi\":\"10.3390/brainsci15030307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15030307\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neurobiological Relationships Between Neurodevelopmental Disorders and Mood Disorders.
According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.