可持续人工智能驱动的风能预测:推进零碳城市和环境计算

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haytham Elmousalami, Aljawharah A. Alnaser, Felix Kin Peng Hui
{"title":"可持续人工智能驱动的风能预测:推进零碳城市和环境计算","authors":"Haytham Elmousalami,&nbsp;Aljawharah A. Alnaser,&nbsp;Felix Kin Peng Hui","doi":"10.1007/s10462-025-11191-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate forecasting of wind speed and power is transforming renewable wind farm management, facilitating efficient energy supply for smart and zero-energy cities. This paper introduces a novel low-carbon Sustainable AI-Driven Wind Energy Forecasting System (SAI-WEFS) developed from a promising real-world case study in MENA region. The SAI-WEFS evaluates twelve machine learning algorithms, utilizing both single and ensemble models for forecasting wind speed (WSF) and wind power (WPF) across multiple timeframes (10 min, 30 min, 6 h, 24 h, and 36 h). The system integrates multi-time horizon predictions, where the WSF output is input for the WPF model. The environmental impact of each algorithm is assessed based on CO<sub>2</sub> emissions for each computational hour. Predictive accuracy is assessed using mean square error (MSE) and mean absolute percentage error (MAPE). Results indicate that ensemble algorithms consistently outperform single ML models, with tree-based models demonstrating a lower environmental impact, emitting approximately 60 g of CO<sub>2</sub> per computational hour compared to deep learning models, which emit up to 500 g per hour. This system enhances the Urban Energy Supply Decarbonization Framework (UESDF) by predicting the Urban Carbon Emission Index (UCEI) to illustrate the Urban Carbon Transition Curve.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11191-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainable AI-driven wind energy forecasting: advancing zero-carbon cities and environmental computation\",\"authors\":\"Haytham Elmousalami,&nbsp;Aljawharah A. Alnaser,&nbsp;Felix Kin Peng Hui\",\"doi\":\"10.1007/s10462-025-11191-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate forecasting of wind speed and power is transforming renewable wind farm management, facilitating efficient energy supply for smart and zero-energy cities. This paper introduces a novel low-carbon Sustainable AI-Driven Wind Energy Forecasting System (SAI-WEFS) developed from a promising real-world case study in MENA region. The SAI-WEFS evaluates twelve machine learning algorithms, utilizing both single and ensemble models for forecasting wind speed (WSF) and wind power (WPF) across multiple timeframes (10 min, 30 min, 6 h, 24 h, and 36 h). The system integrates multi-time horizon predictions, where the WSF output is input for the WPF model. The environmental impact of each algorithm is assessed based on CO<sub>2</sub> emissions for each computational hour. Predictive accuracy is assessed using mean square error (MSE) and mean absolute percentage error (MAPE). Results indicate that ensemble algorithms consistently outperform single ML models, with tree-based models demonstrating a lower environmental impact, emitting approximately 60 g of CO<sub>2</sub> per computational hour compared to deep learning models, which emit up to 500 g per hour. This system enhances the Urban Energy Supply Decarbonization Framework (UESDF) by predicting the Urban Carbon Emission Index (UCEI) to illustrate the Urban Carbon Transition Curve.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11191-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11191-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11191-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对风速和风力的准确预测正在改变可再生能源风电场的管理,促进智慧城市和零能耗城市的高效能源供应。本文介绍了一种新型的低碳可持续人工智能风能预测系统(SAI-WEFS),该系统是根据中东和北非地区一个前景广阔的实际案例研究开发的。SAI-WEFS 评估了 12 种机器学习算法,利用单一模型和集合模型预测多个时间范围(10 分钟、30 分钟、6 小时、24 小时和 36 小时)内的风速(WSF)和风力(WPF)。该系统整合了多时间跨度预测,其中 WSF 输出是 WPF 模型的输入。根据每个计算小时的二氧化碳排放量评估每种算法对环境的影响。预测精度采用均方误差(MSE)和平均绝对百分比误差(MAPE)进行评估。结果表明,集合算法的性能始终优于单一 ML 模型,其中基于树的模型对环境的影响较小,每计算小时的二氧化碳排放量约为 60 克,而深度学习模型每小时的二氧化碳排放量高达 500 克。该系统通过预测城市碳排放指数(UCEI)来说明城市碳过渡曲线,从而增强了城市能源供应去碳化框架(UESDF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable AI-driven wind energy forecasting: advancing zero-carbon cities and environmental computation

Accurate forecasting of wind speed and power is transforming renewable wind farm management, facilitating efficient energy supply for smart and zero-energy cities. This paper introduces a novel low-carbon Sustainable AI-Driven Wind Energy Forecasting System (SAI-WEFS) developed from a promising real-world case study in MENA region. The SAI-WEFS evaluates twelve machine learning algorithms, utilizing both single and ensemble models for forecasting wind speed (WSF) and wind power (WPF) across multiple timeframes (10 min, 30 min, 6 h, 24 h, and 36 h). The system integrates multi-time horizon predictions, where the WSF output is input for the WPF model. The environmental impact of each algorithm is assessed based on CO2 emissions for each computational hour. Predictive accuracy is assessed using mean square error (MSE) and mean absolute percentage error (MAPE). Results indicate that ensemble algorithms consistently outperform single ML models, with tree-based models demonstrating a lower environmental impact, emitting approximately 60 g of CO2 per computational hour compared to deep learning models, which emit up to 500 g per hour. This system enhances the Urban Energy Supply Decarbonization Framework (UESDF) by predicting the Urban Carbon Emission Index (UCEI) to illustrate the Urban Carbon Transition Curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信