{"title":"蓝宝石生长GaN膜制备的垂直GaN-on-钨高压pn二极管","authors":"E. Brusaterra;E. Bahat Treidel;L. Deriks;S. Danylyuk;E. Brandl;J. Bravin;M. Pawlak;A. Külberg;M. Schiersch;A. Thies;O. Hilt","doi":"10.1109/LED.2025.3540156","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate vertical GaN pn-diodes for high voltage applications initially grown and processed on 4” sapphire substrates and then transferred to 4” tungsten substrates to achieve a fully vertical conduction path. Laser lift-off was used to separate the GaN-membrane device structures from the initial sapphire substrate. The diodes show improved forward conduction after the transfer process with on-state resistance reduced from <inline-formula> <tex-math>$1.52~\\pm ~0.05$ </tex-math></inline-formula> m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 to <inline-formula> <tex-math>$1.15~\\pm ~0.05$ </tex-math></inline-formula> m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 and the blocking strength is not heavily compromised with its mean value reduced from <inline-formula> <tex-math>$1015~\\pm ~47$ </tex-math></inline-formula> V to <inline-formula> <tex-math>$988~\\pm ~57$ </tex-math></inline-formula> V. High device yields of the membrane transfer procedure underscores this cost-competitive vertical GaN device technology for high-power applications without the need of expensive GaN substrates.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"564-567"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical GaN-on-Tungsten High Voltage pn-Diodes From Sapphire-Grown GaN Membranes\",\"authors\":\"E. Brusaterra;E. Bahat Treidel;L. Deriks;S. Danylyuk;E. Brandl;J. Bravin;M. Pawlak;A. Külberg;M. Schiersch;A. Thies;O. Hilt\",\"doi\":\"10.1109/LED.2025.3540156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate vertical GaN pn-diodes for high voltage applications initially grown and processed on 4” sapphire substrates and then transferred to 4” tungsten substrates to achieve a fully vertical conduction path. Laser lift-off was used to separate the GaN-membrane device structures from the initial sapphire substrate. The diodes show improved forward conduction after the transfer process with on-state resistance reduced from <inline-formula> <tex-math>$1.52~\\\\pm ~0.05$ </tex-math></inline-formula> m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2 to <inline-formula> <tex-math>$1.15~\\\\pm ~0.05$ </tex-math></inline-formula> m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2 and the blocking strength is not heavily compromised with its mean value reduced from <inline-formula> <tex-math>$1015~\\\\pm ~47$ </tex-math></inline-formula> V to <inline-formula> <tex-math>$988~\\\\pm ~57$ </tex-math></inline-formula> V. High device yields of the membrane transfer procedure underscores this cost-competitive vertical GaN device technology for high-power applications without the need of expensive GaN substrates.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 4\",\"pages\":\"564-567\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10879079/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879079/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们展示了用于高压应用的垂直GaN - pn二极管,最初在4”蓝宝石衬底上生长和加工,然后转移到4”钨衬底上,以实现完全垂直的传导路径。采用激光剥离法将gan膜器件结构与蓝宝石衬底分离。在转移过程后,二极管的正向导通性能得到改善,导通电阻从1.52~\pm ~0.05$ m $ Omega \cdot $ cm2降至1.15~\pm ~0.05$ m $\Omega \cdot $ cm2,阻塞强度并未受到严重影响,其平均值从$1015~\pm ~47$ V降至$988~\pm ~57$ V。膜转移过程的高器件产率强调了这种具有成本竞争力的垂直GaN器件技术在高功率应用中无需昂贵氮化镓基板。
Vertical GaN-on-Tungsten High Voltage pn-Diodes From Sapphire-Grown GaN Membranes
In this work, we demonstrate vertical GaN pn-diodes for high voltage applications initially grown and processed on 4” sapphire substrates and then transferred to 4” tungsten substrates to achieve a fully vertical conduction path. Laser lift-off was used to separate the GaN-membrane device structures from the initial sapphire substrate. The diodes show improved forward conduction after the transfer process with on-state resistance reduced from $1.52~\pm ~0.05$ m$\Omega \cdot $ cm2 to $1.15~\pm ~0.05$ m$\Omega \cdot $ cm2 and the blocking strength is not heavily compromised with its mean value reduced from $1015~\pm ~47$ V to $988~\pm ~57$ V. High device yields of the membrane transfer procedure underscores this cost-competitive vertical GaN device technology for high-power applications without the need of expensive GaN substrates.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.