{"title":"非酒精性脂肪肝小鼠非挥发性血清脂肪酸的铱同位素标记辅助LC-MS全局分析和定量方法","authors":"Yongcheng Dai, Beicheng Zhu, Xueting Yan, Xiaobo Xie, Zixuan Zhan, Yi Lv","doi":"10.1021/acs.analchem.4c05310","DOIUrl":null,"url":null,"abstract":"Highly accurate and sensitive measurements of fatty acids (FAs) in biological samples are essential for advancing our understanding of their diverse biofunctions. In this work, based on the characteristic isotope pattern of iridium (<sup>191/193</sup>Ir), we employed an iridium-encoded amine (Ir-NH<sub>2</sub>) as the derivatization reagent to establish a selective and sensitive liquid chromatography–mass spectrometry (LC-MS) method for rapid identification and accurate quantification of FAs in biological samples. Upon derivatization, nonvolatile FAs were transformed into amide derivatives tagged with a charged iridium tag, exhibiting improved sensitivity and selectivity in the electrospray ionization (ESI) positive ion mode. By leveraging the unique 2.002 Da mass shift and the 3:5 peak intensity ratio from the natural <sup>191</sup>Ir and <sup>193</sup>Ir isotopes, we can rapidly and efficiently screen the potential carboxyl-containing metabolites from biological samples. Compared to other existing methods, our technique offers higher sensitivity, better signal-to-noise ratio, lower detection limit (1.2–8.4 pg/mL), and easier quantification due to the clear identification of iridium-tagged derivatives. With this method, a total of 58 FAs, including both saturated and unsaturated types, were detected in mice serum lipid extracts, with carbon chain lengths varying from C9 to C24. More importantly, this method was successfully employed for global profiling of nonvolatile serum FAs from mice with nonalcoholic fatty liver disease (NAFLD), providing a novel means for detecting them and offering new avenues for exploring their functional roles and disease associations.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iridium Isotope Tag-Assisted LC-MS Method for Global Profiling and Quantification of Nonvolatile Serum Fatty Acids in Nonalcoholic Fatty Liver Mice\",\"authors\":\"Yongcheng Dai, Beicheng Zhu, Xueting Yan, Xiaobo Xie, Zixuan Zhan, Yi Lv\",\"doi\":\"10.1021/acs.analchem.4c05310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly accurate and sensitive measurements of fatty acids (FAs) in biological samples are essential for advancing our understanding of their diverse biofunctions. In this work, based on the characteristic isotope pattern of iridium (<sup>191/193</sup>Ir), we employed an iridium-encoded amine (Ir-NH<sub>2</sub>) as the derivatization reagent to establish a selective and sensitive liquid chromatography–mass spectrometry (LC-MS) method for rapid identification and accurate quantification of FAs in biological samples. Upon derivatization, nonvolatile FAs were transformed into amide derivatives tagged with a charged iridium tag, exhibiting improved sensitivity and selectivity in the electrospray ionization (ESI) positive ion mode. By leveraging the unique 2.002 Da mass shift and the 3:5 peak intensity ratio from the natural <sup>191</sup>Ir and <sup>193</sup>Ir isotopes, we can rapidly and efficiently screen the potential carboxyl-containing metabolites from biological samples. Compared to other existing methods, our technique offers higher sensitivity, better signal-to-noise ratio, lower detection limit (1.2–8.4 pg/mL), and easier quantification due to the clear identification of iridium-tagged derivatives. With this method, a total of 58 FAs, including both saturated and unsaturated types, were detected in mice serum lipid extracts, with carbon chain lengths varying from C9 to C24. More importantly, this method was successfully employed for global profiling of nonvolatile serum FAs from mice with nonalcoholic fatty liver disease (NAFLD), providing a novel means for detecting them and offering new avenues for exploring their functional roles and disease associations.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05310\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Iridium Isotope Tag-Assisted LC-MS Method for Global Profiling and Quantification of Nonvolatile Serum Fatty Acids in Nonalcoholic Fatty Liver Mice
Highly accurate and sensitive measurements of fatty acids (FAs) in biological samples are essential for advancing our understanding of their diverse biofunctions. In this work, based on the characteristic isotope pattern of iridium (191/193Ir), we employed an iridium-encoded amine (Ir-NH2) as the derivatization reagent to establish a selective and sensitive liquid chromatography–mass spectrometry (LC-MS) method for rapid identification and accurate quantification of FAs in biological samples. Upon derivatization, nonvolatile FAs were transformed into amide derivatives tagged with a charged iridium tag, exhibiting improved sensitivity and selectivity in the electrospray ionization (ESI) positive ion mode. By leveraging the unique 2.002 Da mass shift and the 3:5 peak intensity ratio from the natural 191Ir and 193Ir isotopes, we can rapidly and efficiently screen the potential carboxyl-containing metabolites from biological samples. Compared to other existing methods, our technique offers higher sensitivity, better signal-to-noise ratio, lower detection limit (1.2–8.4 pg/mL), and easier quantification due to the clear identification of iridium-tagged derivatives. With this method, a total of 58 FAs, including both saturated and unsaturated types, were detected in mice serum lipid extracts, with carbon chain lengths varying from C9 to C24. More importantly, this method was successfully employed for global profiling of nonvolatile serum FAs from mice with nonalcoholic fatty liver disease (NAFLD), providing a novel means for detecting them and offering new avenues for exploring their functional roles and disease associations.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.