Leonardo Giannini , Genserik Reniers , Ming Yang , Maria Nogal , Nicola Paltrinieri
{"title":"氢系统组件的成本知情风险检测(CIRBI):一种新的预防策略","authors":"Leonardo Giannini , Genserik Reniers , Ming Yang , Maria Nogal , Nicola Paltrinieri","doi":"10.1016/j.ress.2025.111063","DOIUrl":null,"url":null,"abstract":"<div><div>The evolving energy landscape in Europe is showing concrete signals that hydrogen will play a central role in the energy transition scenario. In this light, a report of the European Hydrogen Backbone pinpoints no less than forty existing projects focused on the commissioning of several kilometers of hydrogen pipelines in the following years. Hence, ensuring a safe operability of these systems represents a topic worthy of investigation and marked by significant challenges, especially given the unique properties that make hydrogen a potentially hazardous substance. Established techniques may prove helpful in supporting the development of dedicated prevention and mitigation strategies for hydrogen systems. Among these, Risk-Based Inspection (RBI) could represent an effective tool to design inspection programs aimed at the detection of hydrogen-induced damages, especially for components working in pressurized environments, including pipeline materials. However, the lack of operational experience associated with emerging technologies may lead to the adoption of over-conservative safety measures, which could impact the economic attractiveness of these systems. Therefore, this study proposes an evolution of conventional RBI planning by implementing concepts of safety economics and optimization modelling, thus building a novel approach named “Cost-Informed Risk-Based Inspection” (CIRBI). The proposed methodology is therefore applied to a case study of inspection techniques potentially suitable for pipeline materials (i.e., API X-series pipeline steels), showcasing its potential as a self-standing approach for inspection planning while also demonstrating the insight that it may provide to ensure a safe operability of hydrogen pipelines.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 111063"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Informed Risk-based Inspection (CIRBI) for Hydrogen Systems Components: A Novel Approach to Prevention Strategies\",\"authors\":\"Leonardo Giannini , Genserik Reniers , Ming Yang , Maria Nogal , Nicola Paltrinieri\",\"doi\":\"10.1016/j.ress.2025.111063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evolving energy landscape in Europe is showing concrete signals that hydrogen will play a central role in the energy transition scenario. In this light, a report of the European Hydrogen Backbone pinpoints no less than forty existing projects focused on the commissioning of several kilometers of hydrogen pipelines in the following years. Hence, ensuring a safe operability of these systems represents a topic worthy of investigation and marked by significant challenges, especially given the unique properties that make hydrogen a potentially hazardous substance. Established techniques may prove helpful in supporting the development of dedicated prevention and mitigation strategies for hydrogen systems. Among these, Risk-Based Inspection (RBI) could represent an effective tool to design inspection programs aimed at the detection of hydrogen-induced damages, especially for components working in pressurized environments, including pipeline materials. However, the lack of operational experience associated with emerging technologies may lead to the adoption of over-conservative safety measures, which could impact the economic attractiveness of these systems. Therefore, this study proposes an evolution of conventional RBI planning by implementing concepts of safety economics and optimization modelling, thus building a novel approach named “Cost-Informed Risk-Based Inspection” (CIRBI). The proposed methodology is therefore applied to a case study of inspection techniques potentially suitable for pipeline materials (i.e., API X-series pipeline steels), showcasing its potential as a self-standing approach for inspection planning while also demonstrating the insight that it may provide to ensure a safe operability of hydrogen pipelines.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"260 \",\"pages\":\"Article 111063\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025002649\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002649","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Cost-Informed Risk-based Inspection (CIRBI) for Hydrogen Systems Components: A Novel Approach to Prevention Strategies
The evolving energy landscape in Europe is showing concrete signals that hydrogen will play a central role in the energy transition scenario. In this light, a report of the European Hydrogen Backbone pinpoints no less than forty existing projects focused on the commissioning of several kilometers of hydrogen pipelines in the following years. Hence, ensuring a safe operability of these systems represents a topic worthy of investigation and marked by significant challenges, especially given the unique properties that make hydrogen a potentially hazardous substance. Established techniques may prove helpful in supporting the development of dedicated prevention and mitigation strategies for hydrogen systems. Among these, Risk-Based Inspection (RBI) could represent an effective tool to design inspection programs aimed at the detection of hydrogen-induced damages, especially for components working in pressurized environments, including pipeline materials. However, the lack of operational experience associated with emerging technologies may lead to the adoption of over-conservative safety measures, which could impact the economic attractiveness of these systems. Therefore, this study proposes an evolution of conventional RBI planning by implementing concepts of safety economics and optimization modelling, thus building a novel approach named “Cost-Informed Risk-Based Inspection” (CIRBI). The proposed methodology is therefore applied to a case study of inspection techniques potentially suitable for pipeline materials (i.e., API X-series pipeline steels), showcasing its potential as a self-standing approach for inspection planning while also demonstrating the insight that it may provide to ensure a safe operability of hydrogen pipelines.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.