Houliang Zhou, Benjamin Zalatan, Joan Stanescu, Martin P. Harmer, Jeffrey M. Rickman, Lifang He, Christopher J. Marvel, Brian Y. Chen
{"title":"学习预测罕见事件:异常晶粒生长的案例","authors":"Houliang Zhou, Benjamin Zalatan, Joan Stanescu, Martin P. Harmer, Jeffrey M. Rickman, Lifang He, Christopher J. Marvel, Brian Y. Chen","doi":"10.1038/s41524-025-01530-8","DOIUrl":null,"url":null,"abstract":"<p>Abnormal grain growth (AGG) in polycrystalline microstructures, characterized by the rapid and disproportionate enlargement of a few “abnormal” grains relative to their surroundings, can lead to dramatic, often deleterious changes in the mechanical properties of materials, such as strength and toughness. Thus, the prediction and control of AGG is key to realizing robust mesoscale materials design. Unfortunately, it is challenging to predict these rare events far in advance of their onset because, at early stages, there is little to distinguish incipient abnormal grains from “normal” grains. To overcome this difficulty, we propose two machine learning approaches for predicting whether a grain will become abnormal in the future. These methods analyze grain properties derived from the spatio-temporal evolution of grain characteristics, grain-grain interactions, and a network-based analysis of these relationships. The first, PAL (<b>P</b>redicting <b>A</b>bnormality with <b>L</b>STM), analyzes grain features using a long short-term memory (LSTM) network, and the second, PAGL (<b>P</b>redicting <b>A</b>bnormality with <b>G</b>CRN and <b>L</b>STM), supplements the LSTM with a graph-based convolutional recurrent network (GCRN). We validated these methods on three distinct material scenarios with differing grain properties, observing that PAL and PAGL achieve high sensitivity and precision and, critically, that they are able to predict future abnormality long before it occurs. Finally, we consider the application of the deep learning models developed here to the prediction of rare events in different contexts.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to predict rare events: the case of abnormal grain growth\",\"authors\":\"Houliang Zhou, Benjamin Zalatan, Joan Stanescu, Martin P. Harmer, Jeffrey M. Rickman, Lifang He, Christopher J. Marvel, Brian Y. Chen\",\"doi\":\"10.1038/s41524-025-01530-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abnormal grain growth (AGG) in polycrystalline microstructures, characterized by the rapid and disproportionate enlargement of a few “abnormal” grains relative to their surroundings, can lead to dramatic, often deleterious changes in the mechanical properties of materials, such as strength and toughness. Thus, the prediction and control of AGG is key to realizing robust mesoscale materials design. Unfortunately, it is challenging to predict these rare events far in advance of their onset because, at early stages, there is little to distinguish incipient abnormal grains from “normal” grains. To overcome this difficulty, we propose two machine learning approaches for predicting whether a grain will become abnormal in the future. These methods analyze grain properties derived from the spatio-temporal evolution of grain characteristics, grain-grain interactions, and a network-based analysis of these relationships. The first, PAL (<b>P</b>redicting <b>A</b>bnormality with <b>L</b>STM), analyzes grain features using a long short-term memory (LSTM) network, and the second, PAGL (<b>P</b>redicting <b>A</b>bnormality with <b>G</b>CRN and <b>L</b>STM), supplements the LSTM with a graph-based convolutional recurrent network (GCRN). We validated these methods on three distinct material scenarios with differing grain properties, observing that PAL and PAGL achieve high sensitivity and precision and, critically, that they are able to predict future abnormality long before it occurs. Finally, we consider the application of the deep learning models developed here to the prediction of rare events in different contexts.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01530-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01530-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Learning to predict rare events: the case of abnormal grain growth
Abnormal grain growth (AGG) in polycrystalline microstructures, characterized by the rapid and disproportionate enlargement of a few “abnormal” grains relative to their surroundings, can lead to dramatic, often deleterious changes in the mechanical properties of materials, such as strength and toughness. Thus, the prediction and control of AGG is key to realizing robust mesoscale materials design. Unfortunately, it is challenging to predict these rare events far in advance of their onset because, at early stages, there is little to distinguish incipient abnormal grains from “normal” grains. To overcome this difficulty, we propose two machine learning approaches for predicting whether a grain will become abnormal in the future. These methods analyze grain properties derived from the spatio-temporal evolution of grain characteristics, grain-grain interactions, and a network-based analysis of these relationships. The first, PAL (Predicting Abnormality with LSTM), analyzes grain features using a long short-term memory (LSTM) network, and the second, PAGL (Predicting Abnormality with GCRN and LSTM), supplements the LSTM with a graph-based convolutional recurrent network (GCRN). We validated these methods on three distinct material scenarios with differing grain properties, observing that PAL and PAGL achieve high sensitivity and precision and, critically, that they are able to predict future abnormality long before it occurs. Finally, we consider the application of the deep learning models developed here to the prediction of rare events in different contexts.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.