基于深度注意残差u网的海量MIMO FSO通信系统信道估计

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Al-Imran, Md. Shahriar Nazim, Huy Nguyen, Yeong Min Jang
{"title":"基于深度注意残差u网的海量MIMO FSO通信系统信道估计","authors":"Al-Imran,&nbsp;Md. Shahriar Nazim,&nbsp;Huy Nguyen,&nbsp;Yeong Min Jang","doi":"10.1016/j.icte.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Channel estimation in massive-MIMO FSO systems is critical for ensuring reliable data transmission. However, conventional estimators offer limited benefits due to the computational difficulty of accurately estimating the channel. This paper presents a novel approach to estimate channels using an attention residual U-Net (ARU-Net) architecture which utilizes the advantages of both attention and residual connection. In the simulation, the channel matrix has been represented as a 2D image. The proposed model significantly outperforms traditional channel estimation methods and other deep learning models in terms of MSE (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> at 25 dB SNR), especially in atmospheric turbulence and other noises.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 2","pages":"Pages 287-292"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel estimation of massive MIMO FSO communication system using deep attention residual U-Net\",\"authors\":\"Al-Imran,&nbsp;Md. Shahriar Nazim,&nbsp;Huy Nguyen,&nbsp;Yeong Min Jang\",\"doi\":\"10.1016/j.icte.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Channel estimation in massive-MIMO FSO systems is critical for ensuring reliable data transmission. However, conventional estimators offer limited benefits due to the computational difficulty of accurately estimating the channel. This paper presents a novel approach to estimate channels using an attention residual U-Net (ARU-Net) architecture which utilizes the advantages of both attention and residual connection. In the simulation, the channel matrix has been represented as a 2D image. The proposed model significantly outperforms traditional channel estimation methods and other deep learning models in terms of MSE (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> at 25 dB SNR), especially in atmospheric turbulence and other noises.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 2\",\"pages\":\"Pages 287-292\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524001152\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001152","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在大规模mimo FSO系统中,信道估计是保证数据可靠传输的关键。然而,传统的估计器提供有限的好处,由于精确估计信道的计算困难。本文提出了一种利用注意残差U-Net (attention residual U-Net, ARU-Net)结构来估计信道的新方法。在仿真中,信道矩阵被表示为二维图像。该模型在MSE方面明显优于传统信道估计方法和其他深度学习模型(在25 dB信噪比下为10−5),特别是在大气湍流和其他噪声下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel estimation of massive MIMO FSO communication system using deep attention residual U-Net
Channel estimation in massive-MIMO FSO systems is critical for ensuring reliable data transmission. However, conventional estimators offer limited benefits due to the computational difficulty of accurately estimating the channel. This paper presents a novel approach to estimate channels using an attention residual U-Net (ARU-Net) architecture which utilizes the advantages of both attention and residual connection. In the simulation, the channel matrix has been represented as a 2D image. The proposed model significantly outperforms traditional channel estimation methods and other deep learning models in terms of MSE (105 at 25 dB SNR), especially in atmospheric turbulence and other noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信