{"title":"具有参数不确定性的机器人灵敏度感知模型预测控制","authors":"Tommaso Belvedere;Marco Cognetti;Giuseppe Oriolo;Paolo Robuffo Giordano","doi":"10.1109/TRO.2025.3554415","DOIUrl":null,"url":null,"abstract":"This article introduces a computationally efficient robust model predictive control (MPC) scheme for controlling nonlinear systems affected by parametric uncertainties in their models. The approach leverages the recent notion of <italic>closed-loop state sensitivity</i> and the associated ellipsoidal tubes of perturbed trajectories for taking into account online time-varying restrictions on state and input constraints. This makes the MPC controller “aware” of potential additional requirements needed to cope with parametric uncertainty, thus significantly improving the tracking performance and success rates during navigation in constrained environments. One key contribution lies in the introduction of a computationally efficient robust MPC formulation with a <italic>comparable computational complexity</i> to a standard MPC (i.e., an MPC not explicitly dealing with parametric uncertainty). An extensive simulation campaign is presented to demonstrate the effectiveness of the proposed approach in handling parametric uncertainties and enhancing task performance, safety, and overall robustness. Furthermore, we also provide an experimental validation that shows the feasibility of the approach in real-world conditions and corroborates the statistical findings of the simulation campaign. The versatility and efficiency of the proposed method make it therefore a valuable tool for real-time control of robots subject to nonnegligible uncertainty in their models.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3039-3058"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity-Aware Model Predictive Control for Robots With Parametric Uncertainty\",\"authors\":\"Tommaso Belvedere;Marco Cognetti;Giuseppe Oriolo;Paolo Robuffo Giordano\",\"doi\":\"10.1109/TRO.2025.3554415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a computationally efficient robust model predictive control (MPC) scheme for controlling nonlinear systems affected by parametric uncertainties in their models. The approach leverages the recent notion of <italic>closed-loop state sensitivity</i> and the associated ellipsoidal tubes of perturbed trajectories for taking into account online time-varying restrictions on state and input constraints. This makes the MPC controller “aware” of potential additional requirements needed to cope with parametric uncertainty, thus significantly improving the tracking performance and success rates during navigation in constrained environments. One key contribution lies in the introduction of a computationally efficient robust MPC formulation with a <italic>comparable computational complexity</i> to a standard MPC (i.e., an MPC not explicitly dealing with parametric uncertainty). An extensive simulation campaign is presented to demonstrate the effectiveness of the proposed approach in handling parametric uncertainties and enhancing task performance, safety, and overall robustness. Furthermore, we also provide an experimental validation that shows the feasibility of the approach in real-world conditions and corroborates the statistical findings of the simulation campaign. The versatility and efficiency of the proposed method make it therefore a valuable tool for real-time control of robots subject to nonnegligible uncertainty in their models.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"3039-3058\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938338/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938338/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Sensitivity-Aware Model Predictive Control for Robots With Parametric Uncertainty
This article introduces a computationally efficient robust model predictive control (MPC) scheme for controlling nonlinear systems affected by parametric uncertainties in their models. The approach leverages the recent notion of closed-loop state sensitivity and the associated ellipsoidal tubes of perturbed trajectories for taking into account online time-varying restrictions on state and input constraints. This makes the MPC controller “aware” of potential additional requirements needed to cope with parametric uncertainty, thus significantly improving the tracking performance and success rates during navigation in constrained environments. One key contribution lies in the introduction of a computationally efficient robust MPC formulation with a comparable computational complexity to a standard MPC (i.e., an MPC not explicitly dealing with parametric uncertainty). An extensive simulation campaign is presented to demonstrate the effectiveness of the proposed approach in handling parametric uncertainties and enhancing task performance, safety, and overall robustness. Furthermore, we also provide an experimental validation that shows the feasibility of the approach in real-world conditions and corroborates the statistical findings of the simulation campaign. The versatility and efficiency of the proposed method make it therefore a valuable tool for real-time control of robots subject to nonnegligible uncertainty in their models.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.