Angèle Sequeira, Thomas Sagardoy, Laetitia Bourgeade, Didier Lacombe, Elizabeth Sarrazin, Annick Toutain, Caroline Rooryck
{"title":"fox3基因的新变异证实了其在眼-耳-椎谱中的意义。","authors":"Angèle Sequeira, Thomas Sagardoy, Laetitia Bourgeade, Didier Lacombe, Elizabeth Sarrazin, Annick Toutain, Caroline Rooryck","doi":"10.1038/s41431-025-01837-6","DOIUrl":null,"url":null,"abstract":"Molecular bases of the clinically heterogenous Oculo-Auriculo-Vertebral Spectrum or Craniofacial Microsomia remain largely unknown. Although genetic diagnosis is established in less than 10% of the patients, variants in the FOXI3 gene are the most recurrent genetic cause. We studied a large family with 6 affected individuals on 4 generations showing an autosomal dominant transmission of Oculo-Auriculo-Vertebral Spectrum with incomplete penetrance. The genome sequencing strategy allowed the identification of a new likely pathogenic missense variant located within the Nuclear Localization Signal of FOXI3 and affecting its subcellular localization. Moreover, we described 3 additional rare FOXI3 variants identified in 3 other patients from a cohort of 251 patients with Oculo-Auriculo-Vertebral Spectrum. These variants were classified as Variants of Unknown Significance. In conclusion, this study confirms FOXI3 implication in the Oculo-Auriculo-Vertebral Spectrum and the importance of Nuclear Localization Signal integrity. Genotype-phenotype correlations and putative modifier haplotype are discussed.","PeriodicalId":12016,"journal":{"name":"European Journal of Human Genetics","volume":"33 5","pages":"683-687"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel variants in FOXI3 gene confirm its implication in Oculo-Auriculo-Vertebral spectrum\",\"authors\":\"Angèle Sequeira, Thomas Sagardoy, Laetitia Bourgeade, Didier Lacombe, Elizabeth Sarrazin, Annick Toutain, Caroline Rooryck\",\"doi\":\"10.1038/s41431-025-01837-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular bases of the clinically heterogenous Oculo-Auriculo-Vertebral Spectrum or Craniofacial Microsomia remain largely unknown. Although genetic diagnosis is established in less than 10% of the patients, variants in the FOXI3 gene are the most recurrent genetic cause. We studied a large family with 6 affected individuals on 4 generations showing an autosomal dominant transmission of Oculo-Auriculo-Vertebral Spectrum with incomplete penetrance. The genome sequencing strategy allowed the identification of a new likely pathogenic missense variant located within the Nuclear Localization Signal of FOXI3 and affecting its subcellular localization. Moreover, we described 3 additional rare FOXI3 variants identified in 3 other patients from a cohort of 251 patients with Oculo-Auriculo-Vertebral Spectrum. These variants were classified as Variants of Unknown Significance. In conclusion, this study confirms FOXI3 implication in the Oculo-Auriculo-Vertebral Spectrum and the importance of Nuclear Localization Signal integrity. Genotype-phenotype correlations and putative modifier haplotype are discussed.\",\"PeriodicalId\":12016,\"journal\":{\"name\":\"European Journal of Human Genetics\",\"volume\":\"33 5\",\"pages\":\"683-687\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41431-025-01837-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41431-025-01837-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel variants in FOXI3 gene confirm its implication in Oculo-Auriculo-Vertebral spectrum
Molecular bases of the clinically heterogenous Oculo-Auriculo-Vertebral Spectrum or Craniofacial Microsomia remain largely unknown. Although genetic diagnosis is established in less than 10% of the patients, variants in the FOXI3 gene are the most recurrent genetic cause. We studied a large family with 6 affected individuals on 4 generations showing an autosomal dominant transmission of Oculo-Auriculo-Vertebral Spectrum with incomplete penetrance. The genome sequencing strategy allowed the identification of a new likely pathogenic missense variant located within the Nuclear Localization Signal of FOXI3 and affecting its subcellular localization. Moreover, we described 3 additional rare FOXI3 variants identified in 3 other patients from a cohort of 251 patients with Oculo-Auriculo-Vertebral Spectrum. These variants were classified as Variants of Unknown Significance. In conclusion, this study confirms FOXI3 implication in the Oculo-Auriculo-Vertebral Spectrum and the importance of Nuclear Localization Signal integrity. Genotype-phenotype correlations and putative modifier haplotype are discussed.
期刊介绍:
The European Journal of Human Genetics is the official journal of the European Society of Human Genetics, publishing high-quality, original research papers, short reports and reviews in the rapidly expanding field of human genetics and genomics. It covers molecular, clinical and cytogenetics, interfacing between advanced biomedical research and the clinician, and bridging the great diversity of facilities, resources and viewpoints in the genetics community.
Key areas include:
-Monogenic and multifactorial disorders
-Development and malformation
-Hereditary cancer
-Medical Genomics
-Gene mapping and functional studies
-Genotype-phenotype correlations
-Genetic variation and genome diversity
-Statistical and computational genetics
-Bioinformatics
-Advances in diagnostics
-Therapy and prevention
-Animal models
-Genetic services
-Community genetics