L. Nate Overholtzer , Carinna Torgerson , Jessica Morrel , Hedyeh Ahmadi , J. Michael Tyszka , Megan M. Herting
{"title":"青春期前的杏仁核亚区体积和分配——与年龄、性别和体重指数的关系","authors":"L. Nate Overholtzer , Carinna Torgerson , Jessica Morrel , Hedyeh Ahmadi , J. Michael Tyszka , Megan M. Herting","doi":"10.1016/j.dcn.2025.101554","DOIUrl":null,"url":null,"abstract":"<div><div>The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3953 9- and 10-year-olds from the Adolescent Brain Cognitive Development℠ Study, the <em>CIT168 Atlas</em> was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz with whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101554"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amygdala subregion volumes and apportionment in preadolescents — Associations with age, sex, and body mass index\",\"authors\":\"L. Nate Overholtzer , Carinna Torgerson , Jessica Morrel , Hedyeh Ahmadi , J. Michael Tyszka , Megan M. Herting\",\"doi\":\"10.1016/j.dcn.2025.101554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3953 9- and 10-year-olds from the Adolescent Brain Cognitive Development℠ Study, the <em>CIT168 Atlas</em> was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz with whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.</div></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"73 \",\"pages\":\"Article 101554\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929325000490\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Amygdala subregion volumes and apportionment in preadolescents — Associations with age, sex, and body mass index
The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3953 9- and 10-year-olds from the Adolescent Brain Cognitive Development℠ Study, the CIT168 Atlas was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz with whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.