有限群不可约表示的相位可还原性

IF 1 3区 数学 Q1 MATHEMATICS
Chuangxun Cheng
{"title":"有限群不可约表示的相位可还原性","authors":"Chuangxun Cheng","doi":"10.1016/j.laa.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <span><math><mi>π</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>U</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be an irreducible representation of <em>G</em> on a complex Hilbert space <em>V</em>. In this paper we study the phase retrieval property of <em>π</em> and the existence of maximal spanning vectors for <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span>. By translating the existence of maximal spanning vectors into the existence of cyclic vectors of the form <span><math><mi>v</mi><mo>⊗</mo><mi>v</mi></math></span> for the representation <span><math><mo>(</mo><mi>π</mi><mo>⊗</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mi>G</mi><mo>,</mo><mi>V</mi><mo>⊗</mo><mi>V</mi><mo>)</mo></math></span>, we show that if <em>π</em> is unramified, in the sense that each irreducible component of <span><math><mi>π</mi><mo>⊗</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has multiplicity one, then <em>π</em> admits maximal spanning vectors and hence does phase retrieval. Moreover, if <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is the one-dimensional affine group over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><mi>π</mi><mo>:</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is the unique <span><math><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible representation of <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> (which is ramified), we give a characterization of maximal spanning vectors for <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> by a detailed study of the adjoint representation of <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>)</mo></math></span>. In particular, we show that the set of maximal spanning vectors are open dense in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and the representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> does phase retrieval. Furthermore, we show that the special representations and the cuspidal representations of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> admit maximal spanning vectors and do phase retrieval.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"714 ","pages":"Pages 64-95"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the phase retrievability of irreducible representations of finite groups\",\"authors\":\"Chuangxun Cheng\",\"doi\":\"10.1016/j.laa.2025.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite group and <span><math><mi>π</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>U</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be an irreducible representation of <em>G</em> on a complex Hilbert space <em>V</em>. In this paper we study the phase retrieval property of <em>π</em> and the existence of maximal spanning vectors for <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span>. By translating the existence of maximal spanning vectors into the existence of cyclic vectors of the form <span><math><mi>v</mi><mo>⊗</mo><mi>v</mi></math></span> for the representation <span><math><mo>(</mo><mi>π</mi><mo>⊗</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mi>G</mi><mo>,</mo><mi>V</mi><mo>⊗</mo><mi>V</mi><mo>)</mo></math></span>, we show that if <em>π</em> is unramified, in the sense that each irreducible component of <span><math><mi>π</mi><mo>⊗</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has multiplicity one, then <em>π</em> admits maximal spanning vectors and hence does phase retrieval. Moreover, if <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is the one-dimensional affine group over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><mi>π</mi><mo>:</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is the unique <span><math><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible representation of <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> (which is ramified), we give a characterization of maximal spanning vectors for <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> by a detailed study of the adjoint representation of <span><math><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>)</mo></math></span>. In particular, we show that the set of maximal spanning vectors are open dense in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and the representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>GA</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> does phase retrieval. Furthermore, we show that the special representations and the cuspidal representations of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> admit maximal spanning vectors and do phase retrieval.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"714 \",\"pages\":\"Pages 64-95\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001120\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是有限群,π:G→U(V)是G在复Hilbert空间V上的不可约表示。本文研究了π的相位恢复性质和(π,G,V)的极大生成向量的存在性。通过将最大生成向量的存在性转化为形式为v⊗v的循环向量的存在性来表示(π⊗π,G, v⊗v),我们证明了如果π是非分枝化的,即π⊗π的每个不可约分量具有多重1,则π允许最大生成向量,因此可以进行相位恢复。此外,如果GA(1,q)是有限域Fq和π上的一维仿射群,GA(1,q)→U(Cq−1)是GA(1,q)(其分支)的唯一(q−1)维不可约表示,通过详细研究GA(1,q)在L2(GA(1,q))上的伴随表示,我们给出了(π,GA(1,q),Cq−1)的极大生成向量的刻画。特别地,我们证明了最大生成向量集在Cq−1中是开密集的,并且表示(π,GA(1,q),Cq−1)进行相位检索。此外,我们还证明了GL2(Fq)的特殊表示和反转表示允许最大的生成向量并进行相位检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the phase retrievability of irreducible representations of finite groups
Let G be a finite group and π:GU(V) be an irreducible representation of G on a complex Hilbert space V. In this paper we study the phase retrieval property of π and the existence of maximal spanning vectors for (π,G,V). By translating the existence of maximal spanning vectors into the existence of cyclic vectors of the form vv for the representation (ππ,G,VV), we show that if π is unramified, in the sense that each irreducible component of ππ has multiplicity one, then π admits maximal spanning vectors and hence does phase retrieval. Moreover, if GA(1,q) is the one-dimensional affine group over the finite field Fq and π:GA(1,q)U(Cq1) is the unique (q1)-dimensional irreducible representation of GA(1,q) (which is ramified), we give a characterization of maximal spanning vectors for (π,GA(1,q),Cq1) by a detailed study of the adjoint representation of GA(1,q) on L2(GA(1,q)). In particular, we show that the set of maximal spanning vectors are open dense in Cq1 and the representation (π,GA(1,q),Cq1) does phase retrieval. Furthermore, we show that the special representations and the cuspidal representations of GL2(Fq) admit maximal spanning vectors and do phase retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信