{"title":"半导体制造环境中基于ESD事件检测芯片的ESD实时监测与控制","authors":"Chang-Jiun Lai;Ming-Dou Ker","doi":"10.1109/JEDS.2025.3548886","DOIUrl":null,"url":null,"abstract":"Integrated circuits are susceptible to electrostatic discharge (ESD) events. Real-time detection and alerting of ESD events in semiconductor manufacturing environments is the key to achieving well ESD control. Additionally, the magnitude and duration of an ESD event are strongly correlated with the specific type of ESD events. The development of a novel ESD event detector, integrated on a single chip and featuring a logarithmic amplifier, a magnitude discriminator, and a time discriminator, has been motivated by this. This detector has been designed and fabricated in a 0.18-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m CMOS process. The magnitude of the ESD event can be detected and converted to 5-bit digital output codes, whereas the time duration of the ESD event can be converted to 3-bit digital output codes by the newly developed ESD event detector. It has been proven in field applications that the detected ESD events can be successfully transmitted to the ESD control center through the RF Wi-Fi module, enabling real-time ESD monitoring and control in manufacturing environments.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"252-262"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10915207","citationCount":"0","resultStr":"{\"title\":\"Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection\",\"authors\":\"Chang-Jiun Lai;Ming-Dou Ker\",\"doi\":\"10.1109/JEDS.2025.3548886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated circuits are susceptible to electrostatic discharge (ESD) events. Real-time detection and alerting of ESD events in semiconductor manufacturing environments is the key to achieving well ESD control. Additionally, the magnitude and duration of an ESD event are strongly correlated with the specific type of ESD events. The development of a novel ESD event detector, integrated on a single chip and featuring a logarithmic amplifier, a magnitude discriminator, and a time discriminator, has been motivated by this. This detector has been designed and fabricated in a 0.18-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m CMOS process. The magnitude of the ESD event can be detected and converted to 5-bit digital output codes, whereas the time duration of the ESD event can be converted to 3-bit digital output codes by the newly developed ESD event detector. It has been proven in field applications that the detected ESD events can be successfully transmitted to the ESD control center through the RF Wi-Fi module, enabling real-time ESD monitoring and control in manufacturing environments.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"252-262\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10915207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10915207/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915207/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
Integrated circuits are susceptible to electrostatic discharge (ESD) events. Real-time detection and alerting of ESD events in semiconductor manufacturing environments is the key to achieving well ESD control. Additionally, the magnitude and duration of an ESD event are strongly correlated with the specific type of ESD events. The development of a novel ESD event detector, integrated on a single chip and featuring a logarithmic amplifier, a magnitude discriminator, and a time discriminator, has been motivated by this. This detector has been designed and fabricated in a 0.18-$\mu $ m CMOS process. The magnitude of the ESD event can be detected and converted to 5-bit digital output codes, whereas the time duration of the ESD event can be converted to 3-bit digital output codes by the newly developed ESD event detector. It has been proven in field applications that the detected ESD events can be successfully transmitted to the ESD control center through the RF Wi-Fi module, enabling real-time ESD monitoring and control in manufacturing environments.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.