Chen Zhao, Mo Ma, Jukun Yang, Jingdan Sun, Ying Sun, Pinyi Ma*, Shan Jiao* and Daqian Song*,
{"title":"推进肿瘤微环境分析:Caspase-1监测和协同治疗的荧光纳米系统","authors":"Chen Zhao, Mo Ma, Jukun Yang, Jingdan Sun, Ying Sun, Pinyi Ma*, Shan Jiao* and Daqian Song*, ","doi":"10.1021/acs.analchem.5c0010710.1021/acs.analchem.5c00107","DOIUrl":null,"url":null,"abstract":"<p >The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based “Trojan horse” nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy. Caspase-1 was selected as a biomarker due to its ability to provide accurate feedback on reactive oxygen species (ROS) generation. The system employs Fe-doped polydopamine nanoparticles and red fluorescent carbon quantum dots (RCQDs) as the analytical core, achieving a detection limit of 0.024 U/mL for Caspase-1 with a linear range of 0.05–1.0 U/mL. By integrating MG-63 cell membrane camouflage, PFpR@CM ensures tumor specificity and immune evasion, allowing precise in situ monitoring of ROS production during ferroptosis. Experimental results demonstrate that the system enables simultaneous real-time fluorescence tracking and localized therapeutic interventions, achieving over 80% tumor volume reduction in vivo with minimal systemic toxicity. This work establishes a novel analytical chemistry approach for multifunctional tumor monitoring and treatment, providing an innovative solution to challenges in precision oncology.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 11","pages":"6240–6248 6240–6248"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy\",\"authors\":\"Chen Zhao, Mo Ma, Jukun Yang, Jingdan Sun, Ying Sun, Pinyi Ma*, Shan Jiao* and Daqian Song*, \",\"doi\":\"10.1021/acs.analchem.5c0010710.1021/acs.analchem.5c00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based “Trojan horse” nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy. Caspase-1 was selected as a biomarker due to its ability to provide accurate feedback on reactive oxygen species (ROS) generation. The system employs Fe-doped polydopamine nanoparticles and red fluorescent carbon quantum dots (RCQDs) as the analytical core, achieving a detection limit of 0.024 U/mL for Caspase-1 with a linear range of 0.05–1.0 U/mL. By integrating MG-63 cell membrane camouflage, PFpR@CM ensures tumor specificity and immune evasion, allowing precise in situ monitoring of ROS production during ferroptosis. Experimental results demonstrate that the system enables simultaneous real-time fluorescence tracking and localized therapeutic interventions, achieving over 80% tumor volume reduction in vivo with minimal systemic toxicity. This work establishes a novel analytical chemistry approach for multifunctional tumor monitoring and treatment, providing an innovative solution to challenges in precision oncology.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 11\",\"pages\":\"6240–6248 6240–6248\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c00107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c00107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy
The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based “Trojan horse” nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy. Caspase-1 was selected as a biomarker due to its ability to provide accurate feedback on reactive oxygen species (ROS) generation. The system employs Fe-doped polydopamine nanoparticles and red fluorescent carbon quantum dots (RCQDs) as the analytical core, achieving a detection limit of 0.024 U/mL for Caspase-1 with a linear range of 0.05–1.0 U/mL. By integrating MG-63 cell membrane camouflage, PFpR@CM ensures tumor specificity and immune evasion, allowing precise in situ monitoring of ROS production during ferroptosis. Experimental results demonstrate that the system enables simultaneous real-time fluorescence tracking and localized therapeutic interventions, achieving over 80% tumor volume reduction in vivo with minimal systemic toxicity. This work establishes a novel analytical chemistry approach for multifunctional tumor monitoring and treatment, providing an innovative solution to challenges in precision oncology.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.