{"title":"多视图学习的多尺度图扩散卷积网络","authors":"Shiping Wang, Jiacheng Li, Yuhong Chen, Zhihao Wu, Aiping Huang, Le Zhang","doi":"10.1007/s10462-025-11158-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-view learning has attracted considerable attention owing to its capability to learn more comprehensive representations. Although graph convolutional networks have achieved encouraging results in multi-view research, their limitation to considering only nearest neighbors results in the decrease on the ability to obtain high-order information. Many existing methods acquire high-order correlation by stacking multiple layers onto the model, yet they could lead to the issue of over-smoothing. In this paper, we propose a framework termed multi-scale graph diffusion convolutional network, which aims to gather comprehensive higher-order information without stacking multiple convolutional layers. Specifically, in order to better expand the receptive field of the node and reduce the parameter complexity, the proposed framework utilizes a contractive mapping to transform features from multiple views on decoupled propagation rules. Our framework introduces a multi-scale graph-based diffusion mechanism to adaptively extract the abundant high-order knowledge embedded within multi-scale graphs. Experiments show that the proposed method outperforms other state-of-the-art methods in terms of multi-view semi-supervised classification.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11158-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-scale graph diffusion convolutional network for multi-view learning\",\"authors\":\"Shiping Wang, Jiacheng Li, Yuhong Chen, Zhihao Wu, Aiping Huang, Le Zhang\",\"doi\":\"10.1007/s10462-025-11158-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-view learning has attracted considerable attention owing to its capability to learn more comprehensive representations. Although graph convolutional networks have achieved encouraging results in multi-view research, their limitation to considering only nearest neighbors results in the decrease on the ability to obtain high-order information. Many existing methods acquire high-order correlation by stacking multiple layers onto the model, yet they could lead to the issue of over-smoothing. In this paper, we propose a framework termed multi-scale graph diffusion convolutional network, which aims to gather comprehensive higher-order information without stacking multiple convolutional layers. Specifically, in order to better expand the receptive field of the node and reduce the parameter complexity, the proposed framework utilizes a contractive mapping to transform features from multiple views on decoupled propagation rules. Our framework introduces a multi-scale graph-based diffusion mechanism to adaptively extract the abundant high-order knowledge embedded within multi-scale graphs. Experiments show that the proposed method outperforms other state-of-the-art methods in terms of multi-view semi-supervised classification.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 6\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11158-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11158-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11158-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-scale graph diffusion convolutional network for multi-view learning
Multi-view learning has attracted considerable attention owing to its capability to learn more comprehensive representations. Although graph convolutional networks have achieved encouraging results in multi-view research, their limitation to considering only nearest neighbors results in the decrease on the ability to obtain high-order information. Many existing methods acquire high-order correlation by stacking multiple layers onto the model, yet they could lead to the issue of over-smoothing. In this paper, we propose a framework termed multi-scale graph diffusion convolutional network, which aims to gather comprehensive higher-order information without stacking multiple convolutional layers. Specifically, in order to better expand the receptive field of the node and reduce the parameter complexity, the proposed framework utilizes a contractive mapping to transform features from multiple views on decoupled propagation rules. Our framework introduces a multi-scale graph-based diffusion mechanism to adaptively extract the abundant high-order knowledge embedded within multi-scale graphs. Experiments show that the proposed method outperforms other state-of-the-art methods in terms of multi-view semi-supervised classification.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.