Tian Li , Manzhu Liang , Zhenyuan Li , Fengying Gu , Qin Guo , Qiang Wang
{"title":"无溶剂机械化学法合成新型白藜芦醇神经酸酯:提高亲脂性、热稳定性和氧化稳定性","authors":"Tian Li , Manzhu Liang , Zhenyuan Li , Fengying Gu , Qin Guo , Qiang Wang","doi":"10.1016/j.foodchem.2025.143958","DOIUrl":null,"url":null,"abstract":"<div><div>Resveratrol (RES), a polyphenol with strong antioxidant properties, has limited applications in the food industry because of its poor lipophilicity and stability. A new, green, simple, effective, and universally applicable approach was presented for synthesizing resveratrol nervonic acid (NA) ester (RNE) using a solvent-free mechanochemical method. The conversion, purity, and yield of RNE reached 95.85 %, 91.28 %, and 80.78 %, respectively. High yields of alcoholic fatty acid esters (94.54–99.48 %) were also achieved. The RNE synthesis mechanism involved the formation of a 4′- monoester, followed by a 4′, 5- diester, and ultimately a 3,4′,5- triester. RNE was a slightly yellowish solid with a composition of 3,4′,5 -triester (87.19 %), 3/5,4′-diester (11.61 %), and 4′-monoester (1.2 %). Compared to RES, RNE exhibited significantly improved lipophilicity (204.08 times), thermostability (148.9 °C), and oxidation stability (1.05–1.60 times). This study provided a novel strategy for the synthesis of alcoholic fatty acid esters, expanding the application of RES in the food industry.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"480 ","pages":"Article 143958"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of novel resveratrol nervonic acid ester using a solvent-free mechanochemical method: Improved lipophilicity, thermostability, and oxidation stability\",\"authors\":\"Tian Li , Manzhu Liang , Zhenyuan Li , Fengying Gu , Qin Guo , Qiang Wang\",\"doi\":\"10.1016/j.foodchem.2025.143958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resveratrol (RES), a polyphenol with strong antioxidant properties, has limited applications in the food industry because of its poor lipophilicity and stability. A new, green, simple, effective, and universally applicable approach was presented for synthesizing resveratrol nervonic acid (NA) ester (RNE) using a solvent-free mechanochemical method. The conversion, purity, and yield of RNE reached 95.85 %, 91.28 %, and 80.78 %, respectively. High yields of alcoholic fatty acid esters (94.54–99.48 %) were also achieved. The RNE synthesis mechanism involved the formation of a 4′- monoester, followed by a 4′, 5- diester, and ultimately a 3,4′,5- triester. RNE was a slightly yellowish solid with a composition of 3,4′,5 -triester (87.19 %), 3/5,4′-diester (11.61 %), and 4′-monoester (1.2 %). Compared to RES, RNE exhibited significantly improved lipophilicity (204.08 times), thermostability (148.9 °C), and oxidation stability (1.05–1.60 times). This study provided a novel strategy for the synthesis of alcoholic fatty acid esters, expanding the application of RES in the food industry.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"480 \",\"pages\":\"Article 143958\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625012099\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625012099","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of novel resveratrol nervonic acid ester using a solvent-free mechanochemical method: Improved lipophilicity, thermostability, and oxidation stability
Resveratrol (RES), a polyphenol with strong antioxidant properties, has limited applications in the food industry because of its poor lipophilicity and stability. A new, green, simple, effective, and universally applicable approach was presented for synthesizing resveratrol nervonic acid (NA) ester (RNE) using a solvent-free mechanochemical method. The conversion, purity, and yield of RNE reached 95.85 %, 91.28 %, and 80.78 %, respectively. High yields of alcoholic fatty acid esters (94.54–99.48 %) were also achieved. The RNE synthesis mechanism involved the formation of a 4′- monoester, followed by a 4′, 5- diester, and ultimately a 3,4′,5- triester. RNE was a slightly yellowish solid with a composition of 3,4′,5 -triester (87.19 %), 3/5,4′-diester (11.61 %), and 4′-monoester (1.2 %). Compared to RES, RNE exhibited significantly improved lipophilicity (204.08 times), thermostability (148.9 °C), and oxidation stability (1.05–1.60 times). This study provided a novel strategy for the synthesis of alcoholic fatty acid esters, expanding the application of RES in the food industry.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.