一个以可靠性为中心的面向维护的框架,用于建模、评估和优化复杂的可修复流网络

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nicholas Kaliszewski, Romeo Marian, Javaan Chahl
{"title":"一个以可靠性为中心的面向维护的框架,用于建模、评估和优化复杂的可修复流网络","authors":"Nicholas Kaliszewski, Romeo Marian, Javaan Chahl","doi":"10.1007/s40747-025-01787-y","DOIUrl":null,"url":null,"abstract":"<p>Few would argue that maximising the performance of the many flow networks (FNs) that operate for the benefit of our society and the economy is anything but essential. Through seeking to mitigate the risks posed by different asset failure modes, maintenance is critical to minimising disruptions and maximising resilience. Repairable flow network (RFN) optimisation and reliability centred maintenance (RCM) are both used to support asset related decisions in FNs but independently; meaning, attempts to maximise FN performance using RCM are likely to result in suboptimal outcomes. There is limited work bringing RFN optimisation and RCM together to support evaluating maintenance decisions in the context of holistic network level performance (measured in terms of profitability) and in a way that considers the complex structural and topological relationships that exist between process components, equipment components, and failure modes. Hence, this paper addresses this by developing the complex repairable flow network (CRFN) modelling framework with the goal of ensuring RFN optimisation integrates complex process and equipment (including failure modes) component topologies, such that it operates in alignment with the needs of RCM as part of maximising network flow in terms of gross profitability. This was done through the creation of a novel and transdisciplinary multi-layered network-based approach that integrates information from what were termed the facility, process, maintainable item, and failure mode levels. Furthermore, through running simulation experiments on an example CRFN, it is demonstrated that the CRFN modelling framework can be used to evaluate the impact different maintenance strategies have on maximising network flow in terms of gross profitability.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"9 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reliability centred maintenance-oriented framework for modelling, evaluating, and optimising complex repairable flow networks\",\"authors\":\"Nicholas Kaliszewski, Romeo Marian, Javaan Chahl\",\"doi\":\"10.1007/s40747-025-01787-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Few would argue that maximising the performance of the many flow networks (FNs) that operate for the benefit of our society and the economy is anything but essential. Through seeking to mitigate the risks posed by different asset failure modes, maintenance is critical to minimising disruptions and maximising resilience. Repairable flow network (RFN) optimisation and reliability centred maintenance (RCM) are both used to support asset related decisions in FNs but independently; meaning, attempts to maximise FN performance using RCM are likely to result in suboptimal outcomes. There is limited work bringing RFN optimisation and RCM together to support evaluating maintenance decisions in the context of holistic network level performance (measured in terms of profitability) and in a way that considers the complex structural and topological relationships that exist between process components, equipment components, and failure modes. Hence, this paper addresses this by developing the complex repairable flow network (CRFN) modelling framework with the goal of ensuring RFN optimisation integrates complex process and equipment (including failure modes) component topologies, such that it operates in alignment with the needs of RCM as part of maximising network flow in terms of gross profitability. This was done through the creation of a novel and transdisciplinary multi-layered network-based approach that integrates information from what were termed the facility, process, maintainable item, and failure mode levels. Furthermore, through running simulation experiments on an example CRFN, it is demonstrated that the CRFN modelling framework can be used to evaluate the impact different maintenance strategies have on maximising network flow in terms of gross profitability.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01787-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01787-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

很少有人会争辩说,为了我们的社会和经济利益而运营的许多流量网络(FNs)的性能最大化绝不是必要的。通过寻求减轻不同资产故障模式带来的风险,维护对于最大限度地减少中断和最大限度地提高弹性至关重要。可修流网络(RFN)优化和以可靠性为中心的维护(RCM)都用于支持fn中的资产相关决策,但它们是独立的;这意味着,使用RCM最大化FN性能的尝试可能会导致次优结果。将RFN优化和RCM结合在一起,以支持在整体网络级性能(以盈利能力衡量)的背景下评估维护决策,并考虑过程组件、设备组件和故障模式之间存在的复杂结构和拓扑关系,这方面的工作是有限的。因此,本文通过开发复杂的可修复流网络(CRFN)建模框架来解决这个问题,其目标是确保RFN优化集成复杂的过程和设备(包括故障模式)组件拓扑,这样它就可以与RCM的需求保持一致,作为最大化网络流的一部分。这是通过创建一种新颖的跨学科多层网络方法来实现的,该方法集成了来自设备、过程、可维护项目和故障模式级别的信息。此外,通过在一个CRFN示例上运行仿真实验,证明了CRFN建模框架可用于评估不同维护策略对最大化总盈利能力的网络流量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reliability centred maintenance-oriented framework for modelling, evaluating, and optimising complex repairable flow networks

Few would argue that maximising the performance of the many flow networks (FNs) that operate for the benefit of our society and the economy is anything but essential. Through seeking to mitigate the risks posed by different asset failure modes, maintenance is critical to minimising disruptions and maximising resilience. Repairable flow network (RFN) optimisation and reliability centred maintenance (RCM) are both used to support asset related decisions in FNs but independently; meaning, attempts to maximise FN performance using RCM are likely to result in suboptimal outcomes. There is limited work bringing RFN optimisation and RCM together to support evaluating maintenance decisions in the context of holistic network level performance (measured in terms of profitability) and in a way that considers the complex structural and topological relationships that exist between process components, equipment components, and failure modes. Hence, this paper addresses this by developing the complex repairable flow network (CRFN) modelling framework with the goal of ensuring RFN optimisation integrates complex process and equipment (including failure modes) component topologies, such that it operates in alignment with the needs of RCM as part of maximising network flow in terms of gross profitability. This was done through the creation of a novel and transdisciplinary multi-layered network-based approach that integrates information from what were termed the facility, process, maintainable item, and failure mode levels. Furthermore, through running simulation experiments on an example CRFN, it is demonstrated that the CRFN modelling framework can be used to evaluate the impact different maintenance strategies have on maximising network flow in terms of gross profitability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信