Ki-Uk Kim, Jisu Kim, Hyunjun Jang, Kang Bin Dan, Bo Kyeong Kim, Yong Woo Ji, Dae Yong Yi, Hyeyoung Min
{"title":"人母乳来源的外泌体通过调节免疫细胞对炎症性肠病的保护作用。","authors":"Ki-Uk Kim, Jisu Kim, Hyunjun Jang, Kang Bin Dan, Bo Kyeong Kim, Yong Woo Ji, Dae Yong Yi, Hyeyoung Min","doi":"10.1038/s41538-025-00400-3","DOIUrl":null,"url":null,"abstract":"<p><p>Human breast milk (HBM)-derived exosomes play a crucial role not only in infant nutrition but also in modulating inflammation, immunity, and epithelial cell protection. This study investigated how HBM-derived exosomes regulate immune cell development and function. The exosomes promoted the differentiation of naïve CD4<sup>+</sup> T cells into Treg and Th2 cells while suppressing their differentiation into Th17 and Th1 cells. They also enhanced the proliferation of intestinal epithelial Caco-2 cells and reduced apoptosis in dextran sulfate sodium (DSS)-damaged caco-2 cells. In a DSS-induced colitis mouse model, the exosomes significantly alleviated disease severity, as evidenced by improvements in colon length, disease activity index, and histology grades. Furthermore, the exosomes normalized CD4<sup>+</sup> T cell subsets in the spleen, mesenteric lymph nodes, and colon, restoring levels comparable to controls. These findings suggest that HBM-derived exosomes hold promise as a potential therapeutic strategy for inflammatory bowel disease by modulating T-cell responses and protecting intestinal epithelial cells.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"34"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926119/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protective effects of human breast milk-derived exosomes on inflammatory bowel disease through modulation of immune cells.\",\"authors\":\"Ki-Uk Kim, Jisu Kim, Hyunjun Jang, Kang Bin Dan, Bo Kyeong Kim, Yong Woo Ji, Dae Yong Yi, Hyeyoung Min\",\"doi\":\"10.1038/s41538-025-00400-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human breast milk (HBM)-derived exosomes play a crucial role not only in infant nutrition but also in modulating inflammation, immunity, and epithelial cell protection. This study investigated how HBM-derived exosomes regulate immune cell development and function. The exosomes promoted the differentiation of naïve CD4<sup>+</sup> T cells into Treg and Th2 cells while suppressing their differentiation into Th17 and Th1 cells. They also enhanced the proliferation of intestinal epithelial Caco-2 cells and reduced apoptosis in dextran sulfate sodium (DSS)-damaged caco-2 cells. In a DSS-induced colitis mouse model, the exosomes significantly alleviated disease severity, as evidenced by improvements in colon length, disease activity index, and histology grades. Furthermore, the exosomes normalized CD4<sup>+</sup> T cell subsets in the spleen, mesenteric lymph nodes, and colon, restoring levels comparable to controls. These findings suggest that HBM-derived exosomes hold promise as a potential therapeutic strategy for inflammatory bowel disease by modulating T-cell responses and protecting intestinal epithelial cells.</p>\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\"9 1\",\"pages\":\"34\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1038/s41538-025-00400-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00400-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Protective effects of human breast milk-derived exosomes on inflammatory bowel disease through modulation of immune cells.
Human breast milk (HBM)-derived exosomes play a crucial role not only in infant nutrition but also in modulating inflammation, immunity, and epithelial cell protection. This study investigated how HBM-derived exosomes regulate immune cell development and function. The exosomes promoted the differentiation of naïve CD4+ T cells into Treg and Th2 cells while suppressing their differentiation into Th17 and Th1 cells. They also enhanced the proliferation of intestinal epithelial Caco-2 cells and reduced apoptosis in dextran sulfate sodium (DSS)-damaged caco-2 cells. In a DSS-induced colitis mouse model, the exosomes significantly alleviated disease severity, as evidenced by improvements in colon length, disease activity index, and histology grades. Furthermore, the exosomes normalized CD4+ T cell subsets in the spleen, mesenteric lymph nodes, and colon, restoring levels comparable to controls. These findings suggest that HBM-derived exosomes hold promise as a potential therapeutic strategy for inflammatory bowel disease by modulating T-cell responses and protecting intestinal epithelial cells.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.