Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg
{"title":"与经皮耳迷走神经刺激相关的健康对照组大脑功能连接变化。","authors":"Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg","doi":"10.3389/fnhum.2025.1531123","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.</p><p><strong>Methods: </strong>We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.</p><p><strong>Results: </strong>The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.</p><p><strong>Conclusion: </strong>This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1531123"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in brain functional connectivity associated with transcutaneous auricular vagus nerve stimulation in healthy controls.\",\"authors\":\"Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg\",\"doi\":\"10.3389/fnhum.2025.1531123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.</p><p><strong>Methods: </strong>We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.</p><p><strong>Results: </strong>The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.</p><p><strong>Conclusion: </strong>This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"19 \",\"pages\":\"1531123\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2025.1531123\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1531123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Changes in brain functional connectivity associated with transcutaneous auricular vagus nerve stimulation in healthy controls.
Purpose: A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.
Methods: We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.
Results: The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.
Conclusion: This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.