与经皮耳迷走神经刺激相关的健康对照组大脑功能连接变化。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Frontiers in Human Neuroscience Pub Date : 2025-03-06 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1531123
Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg
{"title":"与经皮耳迷走神经刺激相关的健康对照组大脑功能连接变化。","authors":"Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg","doi":"10.3389/fnhum.2025.1531123","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.</p><p><strong>Methods: </strong>We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.</p><p><strong>Results: </strong>The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.</p><p><strong>Conclusion: </strong>This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1531123"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in brain functional connectivity associated with transcutaneous auricular vagus nerve stimulation in healthy controls.\",\"authors\":\"Daniel A Monti, Nancy Wintering, Faezeh Vedaei, Alicia Steinmetz, Feroze B Mohamed, Andrew B Newberg\",\"doi\":\"10.3389/fnhum.2025.1531123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.</p><p><strong>Methods: </strong>We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.</p><p><strong>Results: </strong>The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.</p><p><strong>Conclusion: </strong>This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"19 \",\"pages\":\"1531123\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2025.1531123\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1531123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in brain functional connectivity associated with transcutaneous auricular vagus nerve stimulation in healthy controls.

Purpose: A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum.

Methods: We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states.

Results: The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network.

Conclusion: This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信