Emrnet:增强的微表情识别网络,具有注意和距离相关

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gaqiong Liu, Shucheng Huang, Gang Wang, Mingxing Li
{"title":"Emrnet:增强的微表情识别网络,具有注意和距离相关","authors":"Gaqiong Liu,&nbsp;Shucheng Huang,&nbsp;Gang Wang,&nbsp;Mingxing Li","doi":"10.1007/s10462-025-11159-0","DOIUrl":null,"url":null,"abstract":"<div><p>Micro-expression recognition (MER) is inherently challenging due to the difficulty of extracting subtle, localized changes in micro-expressions (MEs). Various optical flow-based methods have been proposed for MER, as optical flow can effectively suppress facial identity information while capturing the movement patterns of MEs. However, these methods, characterized by simple architectures, often fail to extract discriminative features, resulting in suboptimal performance. In this paper, we propose an Enhanced Micro-expression Recognition Network with attention and distance correlation (EMRNet) for MER. EMRNet consists of three key phases: First, we introduce a novel channel-wise region-aware attention mechanism within two identical Inception networks, designed to extract global and local expression features in parallel, based on the optical flow input of the same ME. Second, to enhance ME representations, we propose a regularized dilated loss function incorporating distance correlation, which improves the information entropy transferred between the two branches. Last, emotion categories are predicted by fusing the expression-dilated features in the classification branch. Extensive experiments conducted on the composite database from the MEGC 2019 challenge demonstrate the effectiveness of EMRNet under both leave-one-subject-out (LOSO) cross-validation and the composite database evaluation (CDE) protocol. The results show that our approach successfully generates discriminative features, achieving substantial performance gains. Furthermore, EMRNet outperforms existing single-stream and dual-stream models, delivering superior results in MER.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11159-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Emrnet: enhanced micro-expression recognition network with attention and distance correlation\",\"authors\":\"Gaqiong Liu,&nbsp;Shucheng Huang,&nbsp;Gang Wang,&nbsp;Mingxing Li\",\"doi\":\"10.1007/s10462-025-11159-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Micro-expression recognition (MER) is inherently challenging due to the difficulty of extracting subtle, localized changes in micro-expressions (MEs). Various optical flow-based methods have been proposed for MER, as optical flow can effectively suppress facial identity information while capturing the movement patterns of MEs. However, these methods, characterized by simple architectures, often fail to extract discriminative features, resulting in suboptimal performance. In this paper, we propose an Enhanced Micro-expression Recognition Network with attention and distance correlation (EMRNet) for MER. EMRNet consists of three key phases: First, we introduce a novel channel-wise region-aware attention mechanism within two identical Inception networks, designed to extract global and local expression features in parallel, based on the optical flow input of the same ME. Second, to enhance ME representations, we propose a regularized dilated loss function incorporating distance correlation, which improves the information entropy transferred between the two branches. Last, emotion categories are predicted by fusing the expression-dilated features in the classification branch. Extensive experiments conducted on the composite database from the MEGC 2019 challenge demonstrate the effectiveness of EMRNet under both leave-one-subject-out (LOSO) cross-validation and the composite database evaluation (CDE) protocol. The results show that our approach successfully generates discriminative features, achieving substantial performance gains. Furthermore, EMRNet outperforms existing single-stream and dual-stream models, delivering superior results in MER.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 6\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11159-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11159-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11159-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于难以提取微表情中细微的局部变化,微表情识别(MER)本身就具有挑战性。基于光流的人脸识别方法多种多样,光流可以有效地抑制人脸识别信息,同时捕捉人脸的运动模式。然而,这些方法的特点是结构简单,往往不能提取判别特征,导致性能不理想。本文提出了一种基于注意与距离关联的增强微表情识别网络(EMRNet)。EMRNet包括三个关键阶段:首先,我们在两个相同的Inception网络中引入了一种新的通道区域感知注意机制,旨在基于相同ME的光流输入并行提取全局和局部表达特征。其次,我们提出了一种包含距离相关的正则化扩张损失函数,提高了两个分支之间传递的信息熵。最后,通过融合分类分支中的表情扩张特征来预测情感类别。在MEGC 2019挑战的复合数据库上进行的大量实验证明了EMRNet在丢下一个受试者(LOSO)交叉验证和复合数据库评估(CDE)协议下的有效性。结果表明,我们的方法成功地生成了判别特征,取得了显著的性能提升。此外,EMRNet优于现有的单流和双流模型,在MER中提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emrnet: enhanced micro-expression recognition network with attention and distance correlation

Micro-expression recognition (MER) is inherently challenging due to the difficulty of extracting subtle, localized changes in micro-expressions (MEs). Various optical flow-based methods have been proposed for MER, as optical flow can effectively suppress facial identity information while capturing the movement patterns of MEs. However, these methods, characterized by simple architectures, often fail to extract discriminative features, resulting in suboptimal performance. In this paper, we propose an Enhanced Micro-expression Recognition Network with attention and distance correlation (EMRNet) for MER. EMRNet consists of three key phases: First, we introduce a novel channel-wise region-aware attention mechanism within two identical Inception networks, designed to extract global and local expression features in parallel, based on the optical flow input of the same ME. Second, to enhance ME representations, we propose a regularized dilated loss function incorporating distance correlation, which improves the information entropy transferred between the two branches. Last, emotion categories are predicted by fusing the expression-dilated features in the classification branch. Extensive experiments conducted on the composite database from the MEGC 2019 challenge demonstrate the effectiveness of EMRNet under both leave-one-subject-out (LOSO) cross-validation and the composite database evaluation (CDE) protocol. The results show that our approach successfully generates discriminative features, achieving substantial performance gains. Furthermore, EMRNet outperforms existing single-stream and dual-stream models, delivering superior results in MER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信