{"title":"Thermal Characteristics Enhancement of Drain-Extended FinFETs for System on Chip Applications With Dual High-k Field Plates","authors":"Yeonsil Yang;Jongmin Lee;Jang Hyun Kim","doi":"10.1109/JEDS.2025.3548595","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the electrical and thermal characteristics through Drain-Extended Fin Field-effect Transistor (DeFinFET) using separated high-k field plates. In this article, we first compare the structure using silicon dioxide (SiO2) as the field plate near the drain with that using aluminum oxide (Al2O3). The maximum lattice temperature (<inline-formula> <tex-math>$T_{\\max}$ </tex-math></inline-formula>) in the hafnium oxide (HfO2)/SiO2 structure is 391.953 K under the same current condition, whereas <inline-formula> <tex-math>$T_{\\max}$ </tex-math></inline-formula> is reduced to 360.941 K in the HfO2/Al2O3 structure, indicating improved thermal management. Similarly, the thermal resistance <inline-formula> <tex-math>$(R_th)$ </tex-math></inline-formula> is reduced by 8.73% in the Al2O3 based structure, indicating improved thermal characteristics. Heat flux analysis results show that 60.1% of the generated heat is dissipated through the extended drain region, which identifies the heat dissipation path of the device. And when the length of the Al2O3 field plate in the HfO2/Al2O3 structure was changed to 20 nm, 40 nm, 60 nm, and 80 nm, the <inline-formula> <tex-math>$R_{\\mathrm{th}}$ </tex-math></inline-formula> of the 80 nm configuration was found to achieve the best thermal performance with a thermal resistance of 217.091 μm · K/mW. In addition, in this structure, the drain current reduction rate due to SHE was the lowest at 12.1%, and excellent breakdown voltage <inline-formula> <tex-math>$(V_{\\mathrm{BD}})$ </tex-math></inline-formula> was derived because the electric field was not concentrated at the field plate junction near the drain. Consequently, the proposed device has potential application to high voltage (HV) System on Chip (SoC).","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"182-188"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10915199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915199/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Thermal Characteristics Enhancement of Drain-Extended FinFETs for System on Chip Applications With Dual High-k Field Plates
In this paper, we analyze the electrical and thermal characteristics through Drain-Extended Fin Field-effect Transistor (DeFinFET) using separated high-k field plates. In this article, we first compare the structure using silicon dioxide (SiO2) as the field plate near the drain with that using aluminum oxide (Al2O3). The maximum lattice temperature ($T_{\max}$ ) in the hafnium oxide (HfO2)/SiO2 structure is 391.953 K under the same current condition, whereas $T_{\max}$ is reduced to 360.941 K in the HfO2/Al2O3 structure, indicating improved thermal management. Similarly, the thermal resistance $(R_th)$ is reduced by 8.73% in the Al2O3 based structure, indicating improved thermal characteristics. Heat flux analysis results show that 60.1% of the generated heat is dissipated through the extended drain region, which identifies the heat dissipation path of the device. And when the length of the Al2O3 field plate in the HfO2/Al2O3 structure was changed to 20 nm, 40 nm, 60 nm, and 80 nm, the $R_{\mathrm{th}}$ of the 80 nm configuration was found to achieve the best thermal performance with a thermal resistance of 217.091 μm · K/mW. In addition, in this structure, the drain current reduction rate due to SHE was the lowest at 12.1%, and excellent breakdown voltage $(V_{\mathrm{BD}})$ was derived because the electric field was not concentrated at the field plate junction near the drain. Consequently, the proposed device has potential application to high voltage (HV) System on Chip (SoC).
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.