{"title":"石墨烯基Dirac-Source fet通路电阻的传递矩阵建模","authors":"Erica Baccichetti;David Esseni","doi":"10.1109/JEDS.2025.3533599","DOIUrl":null,"url":null,"abstract":"In this paper we first present a model based on the transfer-matrix methodology to describe the ballistic resistance in a graphene <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction, and employ the model in Dirac-Source FETs. In fact, the access region of a graphene based Dirac-Source FET includes a <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction, and we show that this has a sizeable impact on the on-state current of these transistors. In particular, we first validate our model by comparing the calculated <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction resistance with previous experiments and simulations. Then, we exploit the transfer-matrix description into a virtual-source model for nanoscale Dirac-Source FETs, and discuss the influence on the <inline-formula> <tex-math>$\\textrm {I}_{DS}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$\\textrm {V}_{GS}$ </tex-math></inline-formula> curves of the <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction that is embedded in the access region of the device.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"200-209"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852170","citationCount":"0","resultStr":"{\"title\":\"Transfer-Matrix Modeling of the Access Region Resistance in Graphene Based Dirac-Source FETs\",\"authors\":\"Erica Baccichetti;David Esseni\",\"doi\":\"10.1109/JEDS.2025.3533599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we first present a model based on the transfer-matrix methodology to describe the ballistic resistance in a graphene <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction, and employ the model in Dirac-Source FETs. In fact, the access region of a graphene based Dirac-Source FET includes a <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction, and we show that this has a sizeable impact on the on-state current of these transistors. In particular, we first validate our model by comparing the calculated <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction resistance with previous experiments and simulations. Then, we exploit the transfer-matrix description into a virtual-source model for nanoscale Dirac-Source FETs, and discuss the influence on the <inline-formula> <tex-math>$\\\\textrm {I}_{DS}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$\\\\textrm {V}_{GS}$ </tex-math></inline-formula> curves of the <inline-formula> <tex-math>$p$ </tex-math></inline-formula>–<inline-formula> <tex-math>$n$ </tex-math></inline-formula> junction that is embedded in the access region of the device.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"200-209\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852170\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852170/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852170/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transfer-Matrix Modeling of the Access Region Resistance in Graphene Based Dirac-Source FETs
In this paper we first present a model based on the transfer-matrix methodology to describe the ballistic resistance in a graphene $p$ –$n$ junction, and employ the model in Dirac-Source FETs. In fact, the access region of a graphene based Dirac-Source FET includes a $p$ –$n$ junction, and we show that this has a sizeable impact on the on-state current of these transistors. In particular, we first validate our model by comparing the calculated $p$ –$n$ junction resistance with previous experiments and simulations. Then, we exploit the transfer-matrix description into a virtual-source model for nanoscale Dirac-Source FETs, and discuss the influence on the $\textrm {I}_{DS}$ –$\textrm {V}_{GS}$ curves of the $p$ –$n$ junction that is embedded in the access region of the device.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.