{"title":"Special Issue on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2023) in the IEEE Transactions on Device and Materials Reliability","authors":"Luca Cassano;Mihalis Psarakis","doi":"10.1109/TDMR.2025.3544351","DOIUrl":null,"url":null,"abstract":"The ten articles in this special issue present innovative research in the field of defect and fault tolerance in VLSI and nanotechnology systems and provide readers with valuable insights into the latest advances and future trends in these challenging research areas. The focus of these articles is on the reliability in the design, technology and testing of electronic devices and systems, integrated circuits, printed modules, as well as methodologies and tools used for reliability and security prediction, verification and design validation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"2-3"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934089/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Special Issue on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2023) in the IEEE Transactions on Device and Materials Reliability
The ten articles in this special issue present innovative research in the field of defect and fault tolerance in VLSI and nanotechnology systems and provide readers with valuable insights into the latest advances and future trends in these challenging research areas. The focus of these articles is on the reliability in the design, technology and testing of electronic devices and systems, integrated circuits, printed modules, as well as methodologies and tools used for reliability and security prediction, verification and design validation.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.