用于增强床旁膝关节康复的可穿戴等速训练机器人

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Yanggang Feng;Xingyu Hu;Yuebing Li;Ke Ma;Jiaxin Ren;Zhihao Zhou;Fuzhen Yuan;Yan Huang;Liu Wang;Qining Wang;Wuxiang Zhang;Xilun Ding
{"title":"用于增强床旁膝关节康复的可穿戴等速训练机器人","authors":"Yanggang Feng;Xingyu Hu;Yuebing Li;Ke Ma;Jiaxin Ren;Zhihao Zhou;Fuzhen Yuan;Yan Huang;Liu Wang;Qining Wang;Wuxiang Zhang;Xilun Ding","doi":"10.1109/TRO.2025.3552332","DOIUrl":null,"url":null,"abstract":"Knee pain is prevalent in over 20% of the population, limiting the mobility of those affected. In turn, isokinetic dynamometers and robots have been used to facilitate rehabilitation for those still capable of ambulation. However, there are at most only a few wearable robots capable of delivering isokinetic training for bedridden patients. Here, we developed a wearable robot that provides bedside isokinetic training by utilizing a variable stiffness actuator and dynamic energy regeneration. The efficacy of this device was validated in a study involving six subjects with debilitating knee injuries. During two courses of rehabilitation over a total of three weeks, the average peak torque, average torque, and average work produced by their affected knees increased significantly by 81.0%, 101.4%, and 117.6%, respectively. Furthermore, the device's energy regeneration features were found capable of extending its operating time to 198 days under normal usage, representing a 57.8% increase over the same device without regeneration. These results suggest potential methodologies for delivering isokinetic joint rehabilitation to bedridden patients in areas with limited infrastructure.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2460-2476"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wearable Isokinetic Training Robot for Enhanced Bedside Knee Rehabilitation\",\"authors\":\"Yanggang Feng;Xingyu Hu;Yuebing Li;Ke Ma;Jiaxin Ren;Zhihao Zhou;Fuzhen Yuan;Yan Huang;Liu Wang;Qining Wang;Wuxiang Zhang;Xilun Ding\",\"doi\":\"10.1109/TRO.2025.3552332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knee pain is prevalent in over 20% of the population, limiting the mobility of those affected. In turn, isokinetic dynamometers and robots have been used to facilitate rehabilitation for those still capable of ambulation. However, there are at most only a few wearable robots capable of delivering isokinetic training for bedridden patients. Here, we developed a wearable robot that provides bedside isokinetic training by utilizing a variable stiffness actuator and dynamic energy regeneration. The efficacy of this device was validated in a study involving six subjects with debilitating knee injuries. During two courses of rehabilitation over a total of three weeks, the average peak torque, average torque, and average work produced by their affected knees increased significantly by 81.0%, 101.4%, and 117.6%, respectively. Furthermore, the device's energy regeneration features were found capable of extending its operating time to 198 days under normal usage, representing a 57.8% increase over the same device without regeneration. These results suggest potential methodologies for delivering isokinetic joint rehabilitation to bedridden patients in areas with limited infrastructure.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"2460-2476\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930582/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930582/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

膝关节疼痛在20%以上的人群中普遍存在,限制了患者的活动能力。同样,等速测力计和机器人也被用于帮助那些仍能行走的人康复。然而,最多只有少数可穿戴机器人能够为卧床不起的病人提供等速训练。在这里,我们开发了一种可穿戴机器人,通过利用可变刚度执行器和动态能量再生来提供床边等速训练。该装置的有效性在一项涉及6名膝关节损伤患者的研究中得到了验证。在为期三周的两个康复疗程中,患者患膝的平均峰值扭矩、平均扭矩和平均功分别显著增加了81.0%、101.4%和117.6%。此外,该设备的能量再生功能可以将其正常使用的工作时间延长至198天,比没有再生的相同设备增加了57.8%。这些结果提示了在基础设施有限的地区为卧床病人提供等速关节康复的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wearable Isokinetic Training Robot for Enhanced Bedside Knee Rehabilitation
Knee pain is prevalent in over 20% of the population, limiting the mobility of those affected. In turn, isokinetic dynamometers and robots have been used to facilitate rehabilitation for those still capable of ambulation. However, there are at most only a few wearable robots capable of delivering isokinetic training for bedridden patients. Here, we developed a wearable robot that provides bedside isokinetic training by utilizing a variable stiffness actuator and dynamic energy regeneration. The efficacy of this device was validated in a study involving six subjects with debilitating knee injuries. During two courses of rehabilitation over a total of three weeks, the average peak torque, average torque, and average work produced by their affected knees increased significantly by 81.0%, 101.4%, and 117.6%, respectively. Furthermore, the device's energy regeneration features were found capable of extending its operating time to 198 days under normal usage, representing a 57.8% increase over the same device without regeneration. These results suggest potential methodologies for delivering isokinetic joint rehabilitation to bedridden patients in areas with limited infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信