用于肝癌治疗的Zn(1-x-y)MnxCoyO NPs的合成与表征

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Nasar Ahmed, Natasha Nazir, Muhammad Asif, M Adnan, M Fakhar-E-Alam, Muhammad Zubair, Khizar Ul Haq, Muhammad Aseer, Muhammad Atif, Safdar Ali
{"title":"用于肝癌治疗的Zn(1-x-y)MnxCoyO NPs的合成与表征","authors":"Nasar Ahmed, Natasha Nazir, Muhammad Asif, M Adnan, M Fakhar-E-Alam, Muhammad Zubair, Khizar Ul Haq, Muhammad Aseer, Muhammad Atif, Safdar Ali","doi":"10.2174/0113816128330548250206101727","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In this study, pure and cobalt manganese-doped ZnO nanoparticles (Zn(1-x-y)MnxCoyO NPs) at varying concentrations were synthesized through sol-gel method, and zinc acetate dihydrate, manganese nitrate, cobalt acetate, and diethyl amine were used as precursors, with samples finally calcined at 700oC.</p><p><strong>Method: </strong>The hexagonal wurtzite structure of pure and co-doped ZnO NPs was confirmed by X-ray diffraction (XRD). The computed grain sizes of pure and co-doped ZnO NPs, according to Scherrer's formula, were 32 nm, 32.5 nm, 36.3 nm, and 36.5 nm, respectively. SEM was used to observe the morphology of nanoparticles. FTIR spectroscopy was used to examine the chemical make-up and vibrational modes of pure and co-doped ZnO NPs. The bandgaps of pure and doped ZnO were examined using UV-Vis spectroscopy.</p><p><strong>Results: </strong>It was found that the optical bandgap of ZnO was lowered by 3.21 eV by manganese and cobalt doping. Elemental composition analysis was performed by using EDX analysis. Finally, anticancer activity of pure and co-doped ZnO NPs was assessed by employing MTT assay, which indicated that Zn0.8 Mn0.1 Co0.1O NPs showed significant anticancer results against liver cancer (HepG-2) cells as compared to ZnO, Zn0.98 Mn0.01Co0.01O and Zn0.90 Mn0.05 Co0.05O NPs. Moreover, Zn0.8 Mn0.1 Co0.1O NPs showed low toxicity and good biocompatibility comparable to doxorubicin (DOX).</p><p><strong>Conclusion: </strong>Comprehensive experimental findings have demonstrated an authentic way of obtaining feasible in vivo liver cancer therapy.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Zn(1-x-y)MnxCoyO NPs for Liver Cancer Treatment.\",\"authors\":\"Nasar Ahmed, Natasha Nazir, Muhammad Asif, M Adnan, M Fakhar-E-Alam, Muhammad Zubair, Khizar Ul Haq, Muhammad Aseer, Muhammad Atif, Safdar Ali\",\"doi\":\"10.2174/0113816128330548250206101727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>In this study, pure and cobalt manganese-doped ZnO nanoparticles (Zn(1-x-y)MnxCoyO NPs) at varying concentrations were synthesized through sol-gel method, and zinc acetate dihydrate, manganese nitrate, cobalt acetate, and diethyl amine were used as precursors, with samples finally calcined at 700oC.</p><p><strong>Method: </strong>The hexagonal wurtzite structure of pure and co-doped ZnO NPs was confirmed by X-ray diffraction (XRD). The computed grain sizes of pure and co-doped ZnO NPs, according to Scherrer's formula, were 32 nm, 32.5 nm, 36.3 nm, and 36.5 nm, respectively. SEM was used to observe the morphology of nanoparticles. FTIR spectroscopy was used to examine the chemical make-up and vibrational modes of pure and co-doped ZnO NPs. The bandgaps of pure and doped ZnO were examined using UV-Vis spectroscopy.</p><p><strong>Results: </strong>It was found that the optical bandgap of ZnO was lowered by 3.21 eV by manganese and cobalt doping. Elemental composition analysis was performed by using EDX analysis. Finally, anticancer activity of pure and co-doped ZnO NPs was assessed by employing MTT assay, which indicated that Zn0.8 Mn0.1 Co0.1O NPs showed significant anticancer results against liver cancer (HepG-2) cells as compared to ZnO, Zn0.98 Mn0.01Co0.01O and Zn0.90 Mn0.05 Co0.05O NPs. Moreover, Zn0.8 Mn0.1 Co0.1O NPs showed low toxicity and good biocompatibility comparable to doxorubicin (DOX).</p><p><strong>Conclusion: </strong>Comprehensive experimental findings have demonstrated an authentic way of obtaining feasible in vivo liver cancer therapy.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128330548250206101727\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128330548250206101727","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以二水合乙酸锌、硝酸锰、乙酸钴和二乙胺为前驱体,采用溶胶-凝胶法制备了不同浓度的纯和钴锰掺杂ZnO纳米粒子(Zn(1-x-y)MnxCoyO NPs),最终样品在700℃下煅烧。方法:用x射线衍射(XRD)证实了纯ZnO和共掺杂ZnO纳米粒子的六方纤锌矿结构。根据Scherrer公式,计算得到纯ZnO和共掺杂ZnO纳米粒子的晶粒尺寸分别为32 nm、32.5 nm、36.3 nm和36.5 nm。利用扫描电镜观察纳米颗粒的形貌。利用FTIR光谱研究了纯ZnO和共掺杂ZnO纳米粒子的化学组成和振动模式。用紫外可见光谱法研究了纯氧化锌和掺杂氧化锌的带隙。结果:锰钴掺杂使ZnO的光学带隙降低了3.21 eV。元素组成分析采用EDX分析。最后,采用MTT法对ZnO NPs和共掺杂ZnO NPs的抗癌活性进行了评价,结果表明,与ZnO、Zn0.98 mn0.01 co0.010 o和Zn0.90 Mn0.05 co0.050 o NPs相比,Zn0.8 Mn0.1 co0.10 o NPs对肝癌(HepG-2)细胞的抗癌效果显著。Zn0.8 Mn0.1 Co0.1O NPs具有与阿霉素(DOX)相当的低毒性和良好的生物相容性。结论:综合实验结果为肝癌在体内治疗提供了一条切实可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization of Zn(1-x-y)MnxCoyO NPs for Liver Cancer Treatment.

Introduction: In this study, pure and cobalt manganese-doped ZnO nanoparticles (Zn(1-x-y)MnxCoyO NPs) at varying concentrations were synthesized through sol-gel method, and zinc acetate dihydrate, manganese nitrate, cobalt acetate, and diethyl amine were used as precursors, with samples finally calcined at 700oC.

Method: The hexagonal wurtzite structure of pure and co-doped ZnO NPs was confirmed by X-ray diffraction (XRD). The computed grain sizes of pure and co-doped ZnO NPs, according to Scherrer's formula, were 32 nm, 32.5 nm, 36.3 nm, and 36.5 nm, respectively. SEM was used to observe the morphology of nanoparticles. FTIR spectroscopy was used to examine the chemical make-up and vibrational modes of pure and co-doped ZnO NPs. The bandgaps of pure and doped ZnO were examined using UV-Vis spectroscopy.

Results: It was found that the optical bandgap of ZnO was lowered by 3.21 eV by manganese and cobalt doping. Elemental composition analysis was performed by using EDX analysis. Finally, anticancer activity of pure and co-doped ZnO NPs was assessed by employing MTT assay, which indicated that Zn0.8 Mn0.1 Co0.1O NPs showed significant anticancer results against liver cancer (HepG-2) cells as compared to ZnO, Zn0.98 Mn0.01Co0.01O and Zn0.90 Mn0.05 Co0.05O NPs. Moreover, Zn0.8 Mn0.1 Co0.1O NPs showed low toxicity and good biocompatibility comparable to doxorubicin (DOX).

Conclusion: Comprehensive experimental findings have demonstrated an authentic way of obtaining feasible in vivo liver cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信