利用纳米技术提高蜘蛛毒液蛋白Hv1a的稳定性和杀虫活性

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jun-ming Zhang, Yu-jie Luo, Zhi-yi Xu, Shan-shan Chen, Zhen-peng Kai
{"title":"利用纳米技术提高蜘蛛毒液蛋白Hv1a的稳定性和杀虫活性","authors":"Jun-ming Zhang,&nbsp;Yu-jie Luo,&nbsp;Zhi-yi Xu,&nbsp;Shan-shan Chen,&nbsp;Zhen-peng Kai","doi":"10.1186/s40538-025-00756-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>With the advancement of nanotechnology, nano biopesticides have gained considerable attention. This study presents a novel method for enhancing the stability and efficacy of the spider venom protein ω-HXTX-Hv1a, an insecticide neurotoxin. The approach involves encapsulating this protein within chitosan cross-linked sodium tripolyphosphate nanocapsules. Such encapsulation is designed to improve the adhesion of Hv1a to leaf surfaces while protecting it from degradation induced by ultraviolet light.</p><h3>Results</h3><p>Encapsulation of Hv1a in nanocapsules yielded significant advantages. Specifically, the insecticidal activity of nano-Hv1a was maintained at 37.19 ± 1.23%, in stark contrast to merely 1.60 ± 0.63% for Hv1a after 24 h under conditions conducive to photodegradation. Additionally, the encapsulated form demonstrated a prolonged retention time within insects, resulting in enhanced insecticidal efficacy compared to non-encapsulated Hv1a alone. The study further explored the effects of nano-Hv1a on insect growth patterns, revealing marked weight loss and sustained insecticidal activity beyond that observed with plain Hv1a.</p><h3>Conclusion</h3><p>The findings underscore the potential of nano-Hv1a as an efficient and environmentally sustainable alternative for pest control strategies in agriculture. By improving both stability and effectiveness through advanced encapsulation techniques, this research proposes a viable complement to conventional pesticide practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00756-4","citationCount":"0","resultStr":"{\"title\":\"Utilization of nanotechnology to improve the stability and insecticidal activity of spider venom protein Hv1a\",\"authors\":\"Jun-ming Zhang,&nbsp;Yu-jie Luo,&nbsp;Zhi-yi Xu,&nbsp;Shan-shan Chen,&nbsp;Zhen-peng Kai\",\"doi\":\"10.1186/s40538-025-00756-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>With the advancement of nanotechnology, nano biopesticides have gained considerable attention. This study presents a novel method for enhancing the stability and efficacy of the spider venom protein ω-HXTX-Hv1a, an insecticide neurotoxin. The approach involves encapsulating this protein within chitosan cross-linked sodium tripolyphosphate nanocapsules. Such encapsulation is designed to improve the adhesion of Hv1a to leaf surfaces while protecting it from degradation induced by ultraviolet light.</p><h3>Results</h3><p>Encapsulation of Hv1a in nanocapsules yielded significant advantages. Specifically, the insecticidal activity of nano-Hv1a was maintained at 37.19 ± 1.23%, in stark contrast to merely 1.60 ± 0.63% for Hv1a after 24 h under conditions conducive to photodegradation. Additionally, the encapsulated form demonstrated a prolonged retention time within insects, resulting in enhanced insecticidal efficacy compared to non-encapsulated Hv1a alone. The study further explored the effects of nano-Hv1a on insect growth patterns, revealing marked weight loss and sustained insecticidal activity beyond that observed with plain Hv1a.</p><h3>Conclusion</h3><p>The findings underscore the potential of nano-Hv1a as an efficient and environmentally sustainable alternative for pest control strategies in agriculture. By improving both stability and effectiveness through advanced encapsulation techniques, this research proposes a viable complement to conventional pesticide practices.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00756-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-025-00756-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00756-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着纳米技术的发展,纳米生物农药得到了广泛的关注。本研究提出了一种提高蜘蛛毒蛋白- hxtx - hv1a(一种杀虫剂神经毒素)稳定性和有效性的新方法。该方法包括将这种蛋白质包裹在壳聚糖交联三聚磷酸钠纳米胶囊中。这样的包封设计是为了提高Hv1a在叶片表面的粘附性,同时保护其免受紫外线引起的降解。结果将Hv1a包封在纳米胶囊中具有显著的优势。具体来说,纳米Hv1a的杀虫活性维持在37.19±1.23%,而在有利于光降解的条件下,Hv1a在24 h后的杀虫活性仅为1.60±0.63%。此外,与未封装的Hv1a相比,封装形式在昆虫体内的滞留时间延长,从而增强了杀虫效果。该研究进一步探索了纳米Hv1a对昆虫生长模式的影响,揭示了比普通Hv1a更明显的体重减轻和持续的杀虫活性。结论纳米hv1a作为一种高效且环境可持续的农业害虫防治策略的潜在替代品。通过先进的封装技术提高稳定性和有效性,本研究提出了传统农药实践的可行补充。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of nanotechnology to improve the stability and insecticidal activity of spider venom protein Hv1a

Background

With the advancement of nanotechnology, nano biopesticides have gained considerable attention. This study presents a novel method for enhancing the stability and efficacy of the spider venom protein ω-HXTX-Hv1a, an insecticide neurotoxin. The approach involves encapsulating this protein within chitosan cross-linked sodium tripolyphosphate nanocapsules. Such encapsulation is designed to improve the adhesion of Hv1a to leaf surfaces while protecting it from degradation induced by ultraviolet light.

Results

Encapsulation of Hv1a in nanocapsules yielded significant advantages. Specifically, the insecticidal activity of nano-Hv1a was maintained at 37.19 ± 1.23%, in stark contrast to merely 1.60 ± 0.63% for Hv1a after 24 h under conditions conducive to photodegradation. Additionally, the encapsulated form demonstrated a prolonged retention time within insects, resulting in enhanced insecticidal efficacy compared to non-encapsulated Hv1a alone. The study further explored the effects of nano-Hv1a on insect growth patterns, revealing marked weight loss and sustained insecticidal activity beyond that observed with plain Hv1a.

Conclusion

The findings underscore the potential of nano-Hv1a as an efficient and environmentally sustainable alternative for pest control strategies in agriculture. By improving both stability and effectiveness through advanced encapsulation techniques, this research proposes a viable complement to conventional pesticide practices.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信