膝关节骨性关节炎x线平片KL分级的多模态模型。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan, Adnan Mohammad Salem Manasreh, Esam Alsadiq Alshareef
{"title":"膝关节骨性关节炎x线平片KL分级的多模态模型。","authors":"Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan, Adnan Mohammad Salem Manasreh, Esam Alsadiq Alshareef","doi":"10.1177/08953996251314765","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis presents a significant health challenge for many adults globally. At present, there are no pharmacological treatments that can cure this medical condition. The primary method for managing the progress of knee osteoarthritis is through early identification. Currently, X-ray imaging serves as a key modality for predicting the onset of osteoarthritis. Nevertheless, the traditional manual interpretation of X-rays is susceptible to inaccuracies, largely due to the varying levels of expertise among radiologists. In this paper, we propose a multimodal model based on pre-trained vision and language models for the identification of the knee osteoarthritis severity Kellgren-Lawrence (KL) grading. Using Vision transformer and Pre-training of deep bidirectional transformers for language understanding (BERT) for images and texts embeddings extraction helps Transformer encoders extracts more distinctive hidden-states that facilitates the learning process of the neural network classifier. The multimodal model was trained and tested on the OAI dataset, and the results showed remarkable performance compared to the related works. Experimentally, the evaluation of the model on the test set comprising X-ray images demonstrated an overall accuracy of 82.85%, alongside a precision of 84.54% and a recall of 82.89%.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251314765"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal model for knee osteoarthritis KL grading from plain radiograph.\",\"authors\":\"Mohammad Khaleel Sallam Ma'aitah, Abdulkader Helwan, Abdelrahman Radwan, Adnan Mohammad Salem Manasreh, Esam Alsadiq Alshareef\",\"doi\":\"10.1177/08953996251314765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee osteoarthritis presents a significant health challenge for many adults globally. At present, there are no pharmacological treatments that can cure this medical condition. The primary method for managing the progress of knee osteoarthritis is through early identification. Currently, X-ray imaging serves as a key modality for predicting the onset of osteoarthritis. Nevertheless, the traditional manual interpretation of X-rays is susceptible to inaccuracies, largely due to the varying levels of expertise among radiologists. In this paper, we propose a multimodal model based on pre-trained vision and language models for the identification of the knee osteoarthritis severity Kellgren-Lawrence (KL) grading. Using Vision transformer and Pre-training of deep bidirectional transformers for language understanding (BERT) for images and texts embeddings extraction helps Transformer encoders extracts more distinctive hidden-states that facilitates the learning process of the neural network classifier. The multimodal model was trained and tested on the OAI dataset, and the results showed remarkable performance compared to the related works. Experimentally, the evaluation of the model on the test set comprising X-ray images demonstrated an overall accuracy of 82.85%, alongside a precision of 84.54% and a recall of 82.89%.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251314765\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251314765\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251314765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

膝骨关节炎是全球许多成年人面临的重大健康挑战。目前,还没有药物治疗可以治愈这种疾病。管理膝骨关节炎进展的主要方法是通过早期识别。目前,x射线成像是预测骨关节炎发病的关键手段。然而,传统的人工解读x射线容易产生不准确性,这主要是由于放射科医生的专业水平不同。在本文中,我们提出了一种基于预训练视觉和语言模型的多模态模型,用于识别膝关节骨关节炎严重程度Kellgren-Lawrence (KL)分级。使用视觉转换器和深度双向转换器的语言理解预训练(BERT)进行图像和文本嵌入提取,可以帮助transformer编码器提取更多独特的隐藏状态,从而促进神经网络分类器的学习过程。在OAI数据集上对多模态模型进行了训练和测试,结果与相关工作相比,具有显著的性能。在实验中,该模型在包含x射线图像的测试集上的评估显示,总体准确率为82.85%,精度为84.54%,召回率为82.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal model for knee osteoarthritis KL grading from plain radiograph.

Knee osteoarthritis presents a significant health challenge for many adults globally. At present, there are no pharmacological treatments that can cure this medical condition. The primary method for managing the progress of knee osteoarthritis is through early identification. Currently, X-ray imaging serves as a key modality for predicting the onset of osteoarthritis. Nevertheless, the traditional manual interpretation of X-rays is susceptible to inaccuracies, largely due to the varying levels of expertise among radiologists. In this paper, we propose a multimodal model based on pre-trained vision and language models for the identification of the knee osteoarthritis severity Kellgren-Lawrence (KL) grading. Using Vision transformer and Pre-training of deep bidirectional transformers for language understanding (BERT) for images and texts embeddings extraction helps Transformer encoders extracts more distinctive hidden-states that facilitates the learning process of the neural network classifier. The multimodal model was trained and tested on the OAI dataset, and the results showed remarkable performance compared to the related works. Experimentally, the evaluation of the model on the test set comprising X-ray images demonstrated an overall accuracy of 82.85%, alongside a precision of 84.54% and a recall of 82.89%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信