Mathilde Bertrand, Michael Karkuszewski, Rhonda Kersten, Jean-Jacques Orban de Xivry, J Andrew Pruszynski
{"title":"普通狨猴拉绳子。","authors":"Mathilde Bertrand, Michael Karkuszewski, Rhonda Kersten, Jean-Jacques Orban de Xivry, J Andrew Pruszynski","doi":"10.1152/jn.00561.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Coordinated hand movements used to grasp and manipulate objects are crucial for many daily activities, such as tying shoelaces or opening jars. Recently, the string-pulling task, which involves cyclically reaching, grasping, and pulling a string, has been used to study coordinated hand movements in rodents and humans. Here, we characterize how adult common marmosets perform the string-pulling task and describe changes in performance across the lifespan. Marmosets (<i>n</i> = 15, 7 females) performed a string-pulling task for a food reward using an instrumented apparatus attached to their home-cage. Movement kinematics were acquired using markerless video tracking and we assessed individual hand movements and bimanual coordination using standard metrics. Marmosets oriented their gaze toward the string above their hands and readily performed the task regardless of sex or age. The task required little training and animals routinely engaged in multiple pulling trials per session, despite not being under water or food control. All marmosets showed consistent pulling speed and similar hand movements regardless of age. Adult marmosets exhibited a clear hand effect, performing straighter and faster movements with their right hand despite showing idiosyncratic hand preference according to a traditional food retrieval assay. Hand effects were also evident for younger animals but seemed attenuated in the older animals. In terms of bimanual coordination, all adult marmosets demonstrated alternating movement pattern for vertical hand positions. Two younger and two older marmosets exhibited idiosyncratic coordination patterns even after substantial experience. In general, younger and older animals exhibited higher variability in bimanual coordination than adults.<b>NEW & NOTEWORTHY</b> Bimanual coordination is crucial for daily activities. In this study, we characterized how common marmosets performed the string-pulling task without extensive training, regardless of sex or age, and naturally exhibited a cyclical alternating pattern of hand movements. Although the overall behavior was similar across ages, younger and older marmosets demonstrated higher variability in bimanual coordination. These results establish the string-pulling task as a reliable tool for studying bimanual coordination and its underlying neural substrates.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"1222-1233"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"String-pulling by the common marmoset.\",\"authors\":\"Mathilde Bertrand, Michael Karkuszewski, Rhonda Kersten, Jean-Jacques Orban de Xivry, J Andrew Pruszynski\",\"doi\":\"10.1152/jn.00561.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coordinated hand movements used to grasp and manipulate objects are crucial for many daily activities, such as tying shoelaces or opening jars. Recently, the string-pulling task, which involves cyclically reaching, grasping, and pulling a string, has been used to study coordinated hand movements in rodents and humans. Here, we characterize how adult common marmosets perform the string-pulling task and describe changes in performance across the lifespan. Marmosets (<i>n</i> = 15, 7 females) performed a string-pulling task for a food reward using an instrumented apparatus attached to their home-cage. Movement kinematics were acquired using markerless video tracking and we assessed individual hand movements and bimanual coordination using standard metrics. Marmosets oriented their gaze toward the string above their hands and readily performed the task regardless of sex or age. The task required little training and animals routinely engaged in multiple pulling trials per session, despite not being under water or food control. All marmosets showed consistent pulling speed and similar hand movements regardless of age. Adult marmosets exhibited a clear hand effect, performing straighter and faster movements with their right hand despite showing idiosyncratic hand preference according to a traditional food retrieval assay. Hand effects were also evident for younger animals but seemed attenuated in the older animals. In terms of bimanual coordination, all adult marmosets demonstrated alternating movement pattern for vertical hand positions. Two younger and two older marmosets exhibited idiosyncratic coordination patterns even after substantial experience. In general, younger and older animals exhibited higher variability in bimanual coordination than adults.<b>NEW & NOTEWORTHY</b> Bimanual coordination is crucial for daily activities. In this study, we characterized how common marmosets performed the string-pulling task without extensive training, regardless of sex or age, and naturally exhibited a cyclical alternating pattern of hand movements. Although the overall behavior was similar across ages, younger and older marmosets demonstrated higher variability in bimanual coordination. These results establish the string-pulling task as a reliable tool for studying bimanual coordination and its underlying neural substrates.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"1222-1233\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00561.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00561.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Coordinated hand movements used to grasp and manipulate objects are crucial for many daily activities, such as tying shoelaces or opening jars. Recently, the string-pulling task, which involves cyclically reaching, grasping, and pulling a string, has been used to study coordinated hand movements in rodents and humans. Here, we characterize how adult common marmosets perform the string-pulling task and describe changes in performance across the lifespan. Marmosets (n = 15, 7 females) performed a string-pulling task for a food reward using an instrumented apparatus attached to their home-cage. Movement kinematics were acquired using markerless video tracking and we assessed individual hand movements and bimanual coordination using standard metrics. Marmosets oriented their gaze toward the string above their hands and readily performed the task regardless of sex or age. The task required little training and animals routinely engaged in multiple pulling trials per session, despite not being under water or food control. All marmosets showed consistent pulling speed and similar hand movements regardless of age. Adult marmosets exhibited a clear hand effect, performing straighter and faster movements with their right hand despite showing idiosyncratic hand preference according to a traditional food retrieval assay. Hand effects were also evident for younger animals but seemed attenuated in the older animals. In terms of bimanual coordination, all adult marmosets demonstrated alternating movement pattern for vertical hand positions. Two younger and two older marmosets exhibited idiosyncratic coordination patterns even after substantial experience. In general, younger and older animals exhibited higher variability in bimanual coordination than adults.NEW & NOTEWORTHY Bimanual coordination is crucial for daily activities. In this study, we characterized how common marmosets performed the string-pulling task without extensive training, regardless of sex or age, and naturally exhibited a cyclical alternating pattern of hand movements. Although the overall behavior was similar across ages, younger and older marmosets demonstrated higher variability in bimanual coordination. These results establish the string-pulling task as a reliable tool for studying bimanual coordination and its underlying neural substrates.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.