提高高熵合金分类和回归模型性能的元素数值描述

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yan Zhang, Cheng Wen, Pengfei Dang, Xue Jiang, Dezhen Xue, Yanjing Su
{"title":"提高高熵合金分类和回归模型性能的元素数值描述","authors":"Yan Zhang, Cheng Wen, Pengfei Dang, Xue Jiang, Dezhen Xue, Yanjing Su","doi":"10.1038/s41524-025-01560-2","DOIUrl":null,"url":null,"abstract":"<p>The machine learning-assisted design of new alloy compositions often relies on the physical and chemical properties of elements to describe the materials. In the present study, we propose a strategy based on an evolutionary algorithm to generate new elemental numerical descriptions for high-entropy alloys (HEAs). These newly defined descriptions significantly enhance classification accuracy, increasing it from 77% to ~97% for recognizing FCC, BCC, and dual phases, compared to traditional empirical features. Our experimental validation demonstrates that our classification model, utilizing these new elemental numerical descriptions, successfully predicted the phases of 8 out of 9 randomly selected alloys, outperforming the same model based on traditional empirical features, which correctly predicted 4 out of 9. By incorporating these descriptions derived from a simple logistic regression model, the performance of various classifiers improved by at least 15%. Moreover, these new numerical descriptions for phase classification can be directly applied to regression model predictions of HEAs, reducing the error by 22% and improving the <i>R</i><sup>2</sup> value from 0.79 to 0.88 in hardness prediction. Testing on six different materials datasets, including ceramics and functional alloys, demonstrated that the obtained numerical descriptions achieved higher prediction precision across various properties, indicating the broad applicability of our strategy.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"55 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elemental numerical descriptions to enhance classification and regression model performance for high-entropy alloys\",\"authors\":\"Yan Zhang, Cheng Wen, Pengfei Dang, Xue Jiang, Dezhen Xue, Yanjing Su\",\"doi\":\"10.1038/s41524-025-01560-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The machine learning-assisted design of new alloy compositions often relies on the physical and chemical properties of elements to describe the materials. In the present study, we propose a strategy based on an evolutionary algorithm to generate new elemental numerical descriptions for high-entropy alloys (HEAs). These newly defined descriptions significantly enhance classification accuracy, increasing it from 77% to ~97% for recognizing FCC, BCC, and dual phases, compared to traditional empirical features. Our experimental validation demonstrates that our classification model, utilizing these new elemental numerical descriptions, successfully predicted the phases of 8 out of 9 randomly selected alloys, outperforming the same model based on traditional empirical features, which correctly predicted 4 out of 9. By incorporating these descriptions derived from a simple logistic regression model, the performance of various classifiers improved by at least 15%. Moreover, these new numerical descriptions for phase classification can be directly applied to regression model predictions of HEAs, reducing the error by 22% and improving the <i>R</i><sup>2</sup> value from 0.79 to 0.88 in hardness prediction. Testing on six different materials datasets, including ceramics and functional alloys, demonstrated that the obtained numerical descriptions achieved higher prediction precision across various properties, indicating the broad applicability of our strategy.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01560-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01560-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

新合金成分的机器学习辅助设计通常依赖于元素的物理和化学性质来描述材料。在本研究中,我们提出了一种基于进化算法的策略来生成新的高熵合金(HEAs)元素数值描述。与传统的经验特征相比,这些新定义的描述显著提高了分类准确率,将识别FCC、BCC和双相的准确率从77%提高到~97%。我们的实验验证表明,我们的分类模型利用这些新的元素数值描述,成功地预测了9种随机选择的合金中的8种,优于基于传统经验特征的相同模型,正确预测了9种合金中的4种。通过合并这些来自简单逻辑回归模型的描述,各种分类器的性能至少提高了15%。此外,这些新的相分类数值描述可直接应用于HEAs的回归模型预测,误差降低22%,硬度预测的R2值由0.79提高到0.88。在包括陶瓷和功能合金在内的六种不同材料数据集上进行的测试表明,所获得的数值描述在各种性能上取得了更高的预测精度,表明我们的策略具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elemental numerical descriptions to enhance classification and regression model performance for high-entropy alloys

Elemental numerical descriptions to enhance classification and regression model performance for high-entropy alloys

The machine learning-assisted design of new alloy compositions often relies on the physical and chemical properties of elements to describe the materials. In the present study, we propose a strategy based on an evolutionary algorithm to generate new elemental numerical descriptions for high-entropy alloys (HEAs). These newly defined descriptions significantly enhance classification accuracy, increasing it from 77% to ~97% for recognizing FCC, BCC, and dual phases, compared to traditional empirical features. Our experimental validation demonstrates that our classification model, utilizing these new elemental numerical descriptions, successfully predicted the phases of 8 out of 9 randomly selected alloys, outperforming the same model based on traditional empirical features, which correctly predicted 4 out of 9. By incorporating these descriptions derived from a simple logistic regression model, the performance of various classifiers improved by at least 15%. Moreover, these new numerical descriptions for phase classification can be directly applied to regression model predictions of HEAs, reducing the error by 22% and improving the R2 value from 0.79 to 0.88 in hardness prediction. Testing on six different materials datasets, including ceramics and functional alloys, demonstrated that the obtained numerical descriptions achieved higher prediction precision across various properties, indicating the broad applicability of our strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信