梯度压电复合材料用于超声换能器的设计和成像应用

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chenxue Hou, Zhaoxi Li, Chunlong Fei, Qibo Lin, Xiaofei Luo, Xiongwei Wei, Yiheng Yang, Qi Lu, Yi Quan, Guangzhi Dong, Zeyu Chen, Xiaozhou Lü, Weimin Bao, Yintang Yang
{"title":"梯度压电复合材料用于超声换能器的设计和成像应用","authors":"Chenxue Hou, Zhaoxi Li, Chunlong Fei, Qibo Lin, Xiaofei Luo, Xiongwei Wei, Yiheng Yang, Qi Lu, Yi Quan, Guangzhi Dong, Zeyu Chen, Xiaozhou Lü, Weimin Bao, Yintang Yang","doi":"10.1016/j.jmat.2025.101049","DOIUrl":null,"url":null,"abstract":"Ultrasonic imaging technology has advanced rapidly, the escalating demand for imaging quality has driven the continuous development of ultrasonic transducers featuring high-performance. Among them, the crucial factors constraining the further enhancement of imaging quality are the frequency of the device and the intensity of the echo signal. Piezoelectric composites have become a hotspot for ultrasonic transducers and imaging applications due to their excellent properties. However, due to the limitations of the accuracy of the cutting process, the development of piezoelectric/polymer composites is often undermined by undesirable pseudo-vibrations, especially in high-frequency applications, which will significantly reduce energy conversion efficiency. In this study, a novel design method of 1-3 piezoelectric composites with gradient nanoparticle doped polymer is proposed to eliminate the undesired lateral vibrations. Based on the optimized composites, a high-performance composite ultrasonic transducer with a center frequency of 8.51 MHz is prepared. Compared with the traditional composite transducer, the optimized transducer improves the echo voltage amplitude significantly, reaching nearly 3 times. The above advantages are further verified in high-quality ultrasound and photoacoustic imaging. The optimization method has valuable guidance for the design of high-frequency composite transducers, which have great potential in ultrasonic and photoacoustic imaging applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"33 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient piezoelectric composites for ultrasonic transducer design and imaging applications\",\"authors\":\"Chenxue Hou, Zhaoxi Li, Chunlong Fei, Qibo Lin, Xiaofei Luo, Xiongwei Wei, Yiheng Yang, Qi Lu, Yi Quan, Guangzhi Dong, Zeyu Chen, Xiaozhou Lü, Weimin Bao, Yintang Yang\",\"doi\":\"10.1016/j.jmat.2025.101049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic imaging technology has advanced rapidly, the escalating demand for imaging quality has driven the continuous development of ultrasonic transducers featuring high-performance. Among them, the crucial factors constraining the further enhancement of imaging quality are the frequency of the device and the intensity of the echo signal. Piezoelectric composites have become a hotspot for ultrasonic transducers and imaging applications due to their excellent properties. However, due to the limitations of the accuracy of the cutting process, the development of piezoelectric/polymer composites is often undermined by undesirable pseudo-vibrations, especially in high-frequency applications, which will significantly reduce energy conversion efficiency. In this study, a novel design method of 1-3 piezoelectric composites with gradient nanoparticle doped polymer is proposed to eliminate the undesired lateral vibrations. Based on the optimized composites, a high-performance composite ultrasonic transducer with a center frequency of 8.51 MHz is prepared. Compared with the traditional composite transducer, the optimized transducer improves the echo voltage amplitude significantly, reaching nearly 3 times. The above advantages are further verified in high-quality ultrasound and photoacoustic imaging. The optimization method has valuable guidance for the design of high-frequency composite transducers, which have great potential in ultrasonic and photoacoustic imaging applications.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2025.101049\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超声成像技术发展迅速,对成像质量的要求不断提高,推动了高性能超声换能器的不断发展。其中,制约成像质量进一步提高的关键因素是器件的频率和回波信号的强度。压电复合材料以其优异的性能成为超声换能器和成像领域的研究热点。然而,由于切割过程精度的限制,压电/聚合物复合材料的发展经常受到不良伪振动的影响,特别是在高频应用中,这将大大降低能量转换效率。本研究提出了一种梯度纳米粒子掺杂聚合物的1-3压电复合材料的设计方法,以消除不良的横向振动。在此基础上,制备了中心频率为8.51 MHz的高性能复合超声换能器。与传统的复合换能器相比,优化后的换能器回波电压幅值提高了近3倍。以上优点在高质量超声和光声成像中得到进一步验证。该优化方法对高频复合换能器的设计具有重要的指导意义,在超声和光声成像领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gradient piezoelectric composites for ultrasonic transducer design and imaging applications

Gradient piezoelectric composites for ultrasonic transducer design and imaging applications
Ultrasonic imaging technology has advanced rapidly, the escalating demand for imaging quality has driven the continuous development of ultrasonic transducers featuring high-performance. Among them, the crucial factors constraining the further enhancement of imaging quality are the frequency of the device and the intensity of the echo signal. Piezoelectric composites have become a hotspot for ultrasonic transducers and imaging applications due to their excellent properties. However, due to the limitations of the accuracy of the cutting process, the development of piezoelectric/polymer composites is often undermined by undesirable pseudo-vibrations, especially in high-frequency applications, which will significantly reduce energy conversion efficiency. In this study, a novel design method of 1-3 piezoelectric composites with gradient nanoparticle doped polymer is proposed to eliminate the undesired lateral vibrations. Based on the optimized composites, a high-performance composite ultrasonic transducer with a center frequency of 8.51 MHz is prepared. Compared with the traditional composite transducer, the optimized transducer improves the echo voltage amplitude significantly, reaching nearly 3 times. The above advantages are further verified in high-quality ultrasound and photoacoustic imaging. The optimization method has valuable guidance for the design of high-frequency composite transducers, which have great potential in ultrasonic and photoacoustic imaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信