Shirin Schneeberger, Seung Joon Kim, Maria N Geesdorf, Ekaterina Friebel, Pascale Eede, Marina Jendrach, Anastasiya Boltengagen, Caroline Braeuning, Torben Ruhwedel, Andreas J Hülsmeier, Niclas Gimber, Marlene Foerster, Juliane Obst, Myrto Andreadou, Sarah Mundt, Jan Schmoranzer, Stefan Prokop, Wiebke Kessler, Tanja Kuhlmann, Wiebke Möbius, Klaus-Armin Nave, Thorsten Hornemann, Burkhard Becher, Julia M Edgar, Nikos Karaiskos, Christine Kocks, Nikolaus Rajewsky, Frank L Heppner
{"title":"白细胞介素-12信号通过破坏神经元和少突胶质细胞的稳态来驱动阿尔茨海默病的病理。","authors":"Shirin Schneeberger, Seung Joon Kim, Maria N Geesdorf, Ekaterina Friebel, Pascale Eede, Marina Jendrach, Anastasiya Boltengagen, Caroline Braeuning, Torben Ruhwedel, Andreas J Hülsmeier, Niclas Gimber, Marlene Foerster, Juliane Obst, Myrto Andreadou, Sarah Mundt, Jan Schmoranzer, Stefan Prokop, Wiebke Kessler, Tanja Kuhlmann, Wiebke Möbius, Klaus-Armin Nave, Thorsten Hornemann, Burkhard Becher, Julia M Edgar, Nikos Karaiskos, Christine Kocks, Nikolaus Rajewsky, Frank L Heppner","doi":"10.1038/s43587-025-00816-2","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation including interleukin (IL)-12/IL-23-signaling is central to Alzheimer's disease (AD) pathology. Inhibition of p40, a subunit of IL-12/IL-23, attenuates pathology in AD-like mice; however, its signaling mechanism and expression pattern remained elusive. Here we show that IL-12 receptors are predominantly expressed in neurons and oligodendrocytes in AD-like APPPS1 mice and in patients with AD, whereas IL-23 receptor transcripts are barely detectable. Consistently, deletion of the IL-12 receptor in neuroectodermal cells ameliorated AD pathology in APPPS1 mice, whereas removal of IL-23 receptors had no effect. Genetic ablation of IL-12 signaling alone reverted the loss of mature oligodendrocytes, restored myelin homeostasis, rescued the amyloid-β-dependent reduction of parvalbumin-positive interneurons and restored phagocytosis-related changes in microglia of APPPS1 mice. Furthermore, IL-12 protein expression was increased in human AD brains compared to healthy age-matched controls, and human oligodendrocyte-like cells responded profoundly to IL-12 stimulation. We conclude that oligodendroglial and neuronal IL-12 signaling, but not IL-23 signaling, are key in orchestrating AD-related neuroimmune crosstalk and that IL-12 represents an attractive therapeutic target in AD.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":"622-641"},"PeriodicalIF":17.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interleukin-12 signaling drives Alzheimer's disease pathology through disrupting neuronal and oligodendrocyte homeostasis.\",\"authors\":\"Shirin Schneeberger, Seung Joon Kim, Maria N Geesdorf, Ekaterina Friebel, Pascale Eede, Marina Jendrach, Anastasiya Boltengagen, Caroline Braeuning, Torben Ruhwedel, Andreas J Hülsmeier, Niclas Gimber, Marlene Foerster, Juliane Obst, Myrto Andreadou, Sarah Mundt, Jan Schmoranzer, Stefan Prokop, Wiebke Kessler, Tanja Kuhlmann, Wiebke Möbius, Klaus-Armin Nave, Thorsten Hornemann, Burkhard Becher, Julia M Edgar, Nikos Karaiskos, Christine Kocks, Nikolaus Rajewsky, Frank L Heppner\",\"doi\":\"10.1038/s43587-025-00816-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation including interleukin (IL)-12/IL-23-signaling is central to Alzheimer's disease (AD) pathology. Inhibition of p40, a subunit of IL-12/IL-23, attenuates pathology in AD-like mice; however, its signaling mechanism and expression pattern remained elusive. Here we show that IL-12 receptors are predominantly expressed in neurons and oligodendrocytes in AD-like APPPS1 mice and in patients with AD, whereas IL-23 receptor transcripts are barely detectable. Consistently, deletion of the IL-12 receptor in neuroectodermal cells ameliorated AD pathology in APPPS1 mice, whereas removal of IL-23 receptors had no effect. Genetic ablation of IL-12 signaling alone reverted the loss of mature oligodendrocytes, restored myelin homeostasis, rescued the amyloid-β-dependent reduction of parvalbumin-positive interneurons and restored phagocytosis-related changes in microglia of APPPS1 mice. Furthermore, IL-12 protein expression was increased in human AD brains compared to healthy age-matched controls, and human oligodendrocyte-like cells responded profoundly to IL-12 stimulation. We conclude that oligodendroglial and neuronal IL-12 signaling, but not IL-23 signaling, are key in orchestrating AD-related neuroimmune crosstalk and that IL-12 represents an attractive therapeutic target in AD.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"622-641\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00816-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00816-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Interleukin-12 signaling drives Alzheimer's disease pathology through disrupting neuronal and oligodendrocyte homeostasis.
Neuroinflammation including interleukin (IL)-12/IL-23-signaling is central to Alzheimer's disease (AD) pathology. Inhibition of p40, a subunit of IL-12/IL-23, attenuates pathology in AD-like mice; however, its signaling mechanism and expression pattern remained elusive. Here we show that IL-12 receptors are predominantly expressed in neurons and oligodendrocytes in AD-like APPPS1 mice and in patients with AD, whereas IL-23 receptor transcripts are barely detectable. Consistently, deletion of the IL-12 receptor in neuroectodermal cells ameliorated AD pathology in APPPS1 mice, whereas removal of IL-23 receptors had no effect. Genetic ablation of IL-12 signaling alone reverted the loss of mature oligodendrocytes, restored myelin homeostasis, rescued the amyloid-β-dependent reduction of parvalbumin-positive interneurons and restored phagocytosis-related changes in microglia of APPPS1 mice. Furthermore, IL-12 protein expression was increased in human AD brains compared to healthy age-matched controls, and human oligodendrocyte-like cells responded profoundly to IL-12 stimulation. We conclude that oligodendroglial and neuronal IL-12 signaling, but not IL-23 signaling, are key in orchestrating AD-related neuroimmune crosstalk and that IL-12 represents an attractive therapeutic target in AD.