\(D_{6}^{(1)}\) Sakai曲面上广义Laguerre和Charlier正交多项式及离散painlev方程的递归关系

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Xing Li, Anton Dzhamay, Galina Filipuk, Da-jun Zhang
{"title":"\\(D_{6}^{(1)}\\) Sakai曲面上广义Laguerre和Charlier正交多项式及离散painlev<e:1>方程的递归关系","authors":"Xing Li,&nbsp;Anton Dzhamay,&nbsp;Galina Filipuk,&nbsp;Da-jun Zhang","doi":"10.1007/s11040-025-09502-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns the discrete version of the <i>Painlevé identification problem</i>, i.e., how to recognize a certain recurrence relation as a discrete Painlevé equation. Often some clues can be seen from the setting of the problem, e.g., when the recurrence is connected with some differential Painlevé equation, or from the geometry of the configuration of indeterminate points of the equation. The main message of our paper is that, in fact, this only allows us to identify the <i>configuration space</i> of the dynamic system, but not the dynamics themselves. The <i>refined version</i> of the identification problem lies in determining, up to the conjugation, the translation direction of the dynamics, which in turn requires the full power of the geometric theory of Painlevé equations. To illustrate this point, in this paper we consider two examples of such recurrences that appear in the theory of orthogonal polynomials. We choose these examples because they get regularized on the same family of Sakai surfaces, but at the same time are not equivalent, since they result in non-equivalent translation directions. In addition, we show the effectiveness of a recently proposed identification procedure for discrete Painlevé equations using Sakai’s geometric approach for answering such questions. In particular, this approach requires no a priori knowledge of a possible type of the equation.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"28 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrence Relations for the Generalized Laguerre and Charlier Orthogonal Polynomials and Discrete Painlevé Equations on the \\\\(D_{6}^{(1)}\\\\) Sakai Surface\",\"authors\":\"Xing Li,&nbsp;Anton Dzhamay,&nbsp;Galina Filipuk,&nbsp;Da-jun Zhang\",\"doi\":\"10.1007/s11040-025-09502-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concerns the discrete version of the <i>Painlevé identification problem</i>, i.e., how to recognize a certain recurrence relation as a discrete Painlevé equation. Often some clues can be seen from the setting of the problem, e.g., when the recurrence is connected with some differential Painlevé equation, or from the geometry of the configuration of indeterminate points of the equation. The main message of our paper is that, in fact, this only allows us to identify the <i>configuration space</i> of the dynamic system, but not the dynamics themselves. The <i>refined version</i> of the identification problem lies in determining, up to the conjugation, the translation direction of the dynamics, which in turn requires the full power of the geometric theory of Painlevé equations. To illustrate this point, in this paper we consider two examples of such recurrences that appear in the theory of orthogonal polynomials. We choose these examples because they get regularized on the same family of Sakai surfaces, but at the same time are not equivalent, since they result in non-equivalent translation directions. In addition, we show the effectiveness of a recently proposed identification procedure for discrete Painlevé equations using Sakai’s geometric approach for answering such questions. In particular, this approach requires no a priori knowledge of a possible type of the equation.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-025-09502-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-025-09502-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了painlev识别问题的离散版本,即如何将某个递归关系识别为一个离散的painlev方程。通常可以从问题的设置中看到一些线索,例如,当递归与某些微分方程相关联时,或者从方程中不定点的构型的几何形状中。我们论文的主要信息是,事实上,这只允许我们识别动态系统的构型空间,而不是动力学本身。识别问题的精化版本在于确定动力学的平移方向,直到共轭,这反过来又需要painlevel方程的几何理论的全部力量。为了说明这一点,在本文中,我们考虑在正交多项式理论中出现的这种递归的两个例子。我们选择这些例子是因为它们在同一个Sakai曲面族上得到正则化,但同时又不等价,因为它们导致了不等价的平移方向。此外,我们展示了最近提出的离散painlev方程的识别过程的有效性,该过程使用Sakai的几何方法来回答此类问题。特别地,这种方法不需要对方程的可能类型的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recurrence Relations for the Generalized Laguerre and Charlier Orthogonal Polynomials and Discrete Painlevé Equations on the \(D_{6}^{(1)}\) Sakai Surface

Recurrence Relations for the Generalized Laguerre and Charlier Orthogonal Polynomials and Discrete Painlevé Equations on the \(D_{6}^{(1)}\) Sakai Surface

This paper concerns the discrete version of the Painlevé identification problem, i.e., how to recognize a certain recurrence relation as a discrete Painlevé equation. Often some clues can be seen from the setting of the problem, e.g., when the recurrence is connected with some differential Painlevé equation, or from the geometry of the configuration of indeterminate points of the equation. The main message of our paper is that, in fact, this only allows us to identify the configuration space of the dynamic system, but not the dynamics themselves. The refined version of the identification problem lies in determining, up to the conjugation, the translation direction of the dynamics, which in turn requires the full power of the geometric theory of Painlevé equations. To illustrate this point, in this paper we consider two examples of such recurrences that appear in the theory of orthogonal polynomials. We choose these examples because they get regularized on the same family of Sakai surfaces, but at the same time are not equivalent, since they result in non-equivalent translation directions. In addition, we show the effectiveness of a recently proposed identification procedure for discrete Painlevé equations using Sakai’s geometric approach for answering such questions. In particular, this approach requires no a priori knowledge of a possible type of the equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信