基于知识的自适应增益共享变体算法与历史概率扩展及其在逃生演习决策中的应用

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lei Xie, Yuan Wang, Shangqin Tang, Yintong Li, Zhuoran Zhang, Changqiang Huang
{"title":"基于知识的自适应增益共享变体算法与历史概率扩展及其在逃生演习决策中的应用","authors":"Lei Xie,&nbsp;Yuan Wang,&nbsp;Shangqin Tang,&nbsp;Yintong Li,&nbsp;Zhuoran Zhang,&nbsp;Changqiang Huang","doi":"10.1007/s10462-024-11096-4","DOIUrl":null,"url":null,"abstract":"<div><p>To further improve the performance of adaptive gaining-sharing knowledge-based algorithm (AGSK), a novel adaptive gaining sharing knowledge-based algorithm with historical probability expansion (HPE-AGSK) is proposed by modifying the search strategies. Based on AGSK, three improvement strategies are proposed. First, expansion sharing strategy is proposed and added in junior gaining-sharing phase to boost local search ability. Second, historical probability expansion strategy is proposed and added in senior gaining-sharing phase to strengthen global search ability. Last, reverse gaining strategy is proposed and utilized to expand population distribution at the beginning of iterations. The performance of HPE-AGSK is initially evaluated using IEEE CEC 2021 test suite, compared with fifteen state-of-the-art algorithms (AGSK, APGSK, APGSK-IMODE, GLAGSK, EDA2, AAVS-EDA, EBOwithCMAR, LSHADE-SPACMA, HSES, IMODE, MadDE, CJADE, and iLSHADE-RSP). The results demonstrate that HPE-AGSK outperforms both state-of-the-art GSK-based variants and past winners of IEEE CEC competitions. Subsequently, GSK-based variants and other exceptional algorithms in CEC 2021 are selected to further evaluate the performance of HPE-AGSK using IEEE CEC 2018 test suite. The statistical results show that HPE-AGSK has superior exploration ability than the comparison algorithms, and has strong competition with APGSK (state-of-the-art AGSK variant) and IMODE (CEC 2020 Winner) in exploitation ability. Finally, HPE-AGSK is utilized to solve the beyond visual range escape maneuver decision making problem. Its success rate is 100%, and mean maneuver time is 9.10 s, these results show that HPE-AGSK has good BVR escape maneuver decision-making performance. In conclusion, HPE-AGSK is a highly promising AGSK variant that significantly enhances the performance, and is an outstanding development of AGSK. The code of HPE-AGSK can be downloaded from https://github.com/xieleilei0305/HPE-AGSK-CODE.git. (The link will be available for readers after the paper is published).</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11096-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive gaining-sharing knowledge-based variant algorithm with historical probability expansion and its application in escape maneuver decision making\",\"authors\":\"Lei Xie,&nbsp;Yuan Wang,&nbsp;Shangqin Tang,&nbsp;Yintong Li,&nbsp;Zhuoran Zhang,&nbsp;Changqiang Huang\",\"doi\":\"10.1007/s10462-024-11096-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To further improve the performance of adaptive gaining-sharing knowledge-based algorithm (AGSK), a novel adaptive gaining sharing knowledge-based algorithm with historical probability expansion (HPE-AGSK) is proposed by modifying the search strategies. Based on AGSK, three improvement strategies are proposed. First, expansion sharing strategy is proposed and added in junior gaining-sharing phase to boost local search ability. Second, historical probability expansion strategy is proposed and added in senior gaining-sharing phase to strengthen global search ability. Last, reverse gaining strategy is proposed and utilized to expand population distribution at the beginning of iterations. The performance of HPE-AGSK is initially evaluated using IEEE CEC 2021 test suite, compared with fifteen state-of-the-art algorithms (AGSK, APGSK, APGSK-IMODE, GLAGSK, EDA2, AAVS-EDA, EBOwithCMAR, LSHADE-SPACMA, HSES, IMODE, MadDE, CJADE, and iLSHADE-RSP). The results demonstrate that HPE-AGSK outperforms both state-of-the-art GSK-based variants and past winners of IEEE CEC competitions. Subsequently, GSK-based variants and other exceptional algorithms in CEC 2021 are selected to further evaluate the performance of HPE-AGSK using IEEE CEC 2018 test suite. The statistical results show that HPE-AGSK has superior exploration ability than the comparison algorithms, and has strong competition with APGSK (state-of-the-art AGSK variant) and IMODE (CEC 2020 Winner) in exploitation ability. Finally, HPE-AGSK is utilized to solve the beyond visual range escape maneuver decision making problem. Its success rate is 100%, and mean maneuver time is 9.10 s, these results show that HPE-AGSK has good BVR escape maneuver decision-making performance. In conclusion, HPE-AGSK is a highly promising AGSK variant that significantly enhances the performance, and is an outstanding development of AGSK. The code of HPE-AGSK can be downloaded from https://github.com/xieleilei0305/HPE-AGSK-CODE.git. (The link will be available for readers after the paper is published).</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-11096-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-11096-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11096-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive gaining-sharing knowledge-based variant algorithm with historical probability expansion and its application in escape maneuver decision making

To further improve the performance of adaptive gaining-sharing knowledge-based algorithm (AGSK), a novel adaptive gaining sharing knowledge-based algorithm with historical probability expansion (HPE-AGSK) is proposed by modifying the search strategies. Based on AGSK, three improvement strategies are proposed. First, expansion sharing strategy is proposed and added in junior gaining-sharing phase to boost local search ability. Second, historical probability expansion strategy is proposed and added in senior gaining-sharing phase to strengthen global search ability. Last, reverse gaining strategy is proposed and utilized to expand population distribution at the beginning of iterations. The performance of HPE-AGSK is initially evaluated using IEEE CEC 2021 test suite, compared with fifteen state-of-the-art algorithms (AGSK, APGSK, APGSK-IMODE, GLAGSK, EDA2, AAVS-EDA, EBOwithCMAR, LSHADE-SPACMA, HSES, IMODE, MadDE, CJADE, and iLSHADE-RSP). The results demonstrate that HPE-AGSK outperforms both state-of-the-art GSK-based variants and past winners of IEEE CEC competitions. Subsequently, GSK-based variants and other exceptional algorithms in CEC 2021 are selected to further evaluate the performance of HPE-AGSK using IEEE CEC 2018 test suite. The statistical results show that HPE-AGSK has superior exploration ability than the comparison algorithms, and has strong competition with APGSK (state-of-the-art AGSK variant) and IMODE (CEC 2020 Winner) in exploitation ability. Finally, HPE-AGSK is utilized to solve the beyond visual range escape maneuver decision making problem. Its success rate is 100%, and mean maneuver time is 9.10 s, these results show that HPE-AGSK has good BVR escape maneuver decision-making performance. In conclusion, HPE-AGSK is a highly promising AGSK variant that significantly enhances the performance, and is an outstanding development of AGSK. The code of HPE-AGSK can be downloaded from https://github.com/xieleilei0305/HPE-AGSK-CODE.git. (The link will be available for readers after the paper is published).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信