zif -67模板化NiCoP双金属催化剂提高水裂解性能

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Meijie Ding , Qingsong Yu , Zhiqiang Wei , Dexue Liu
{"title":"zif -67模板化NiCoP双金属催化剂提高水裂解性能","authors":"Meijie Ding ,&nbsp;Qingsong Yu ,&nbsp;Zhiqiang Wei ,&nbsp;Dexue Liu","doi":"10.1016/j.mssp.2025.109461","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are essential to overcoming the slow kinetics of water electrolysis. In this study, a bimetallic NiCoP catalyst with a distinctive hollow structure was synthesized via a ZIF-67 template, followed by etching with Ni<sup>2+</sup> aqueous solution and a subsequent phosphorization process. The resulting material demonstrates exceptional electrochemical performance. In HER, it exhibits excellent catalytic activity, achieving an overpotential of 134.6 mV at a current density of 10 mA cm<sup>−2</sup> and a Tafel slope of 72.3 mV·dec<sup>−1</sup>. For OER, at a current density of 10 mA cm<sup>−2</sup>, the overpotential is 273 mV, with a Tafel slope of 88.9 mV·dec<sup>−1</sup>. Moreover, the catalyst shows excellent long-term stability. Density functional theory (DFT) calculations indicate that the incorporation of Ni into CoP alters the electronic states at the Fermi level, thereby improving its electrical conductivity. This work not only offers novel insights into the structural design of water splitting catalysts but also highlights the promising potential of NiCoP as an efficient catalyst in the energy conversion domain.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"192 ","pages":"Article 109461"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIF-67-templated NiCoP bimetallic catalysts for enhanced water splitting performance\",\"authors\":\"Meijie Ding ,&nbsp;Qingsong Yu ,&nbsp;Zhiqiang Wei ,&nbsp;Dexue Liu\",\"doi\":\"10.1016/j.mssp.2025.109461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are essential to overcoming the slow kinetics of water electrolysis. In this study, a bimetallic NiCoP catalyst with a distinctive hollow structure was synthesized via a ZIF-67 template, followed by etching with Ni<sup>2+</sup> aqueous solution and a subsequent phosphorization process. The resulting material demonstrates exceptional electrochemical performance. In HER, it exhibits excellent catalytic activity, achieving an overpotential of 134.6 mV at a current density of 10 mA cm<sup>−2</sup> and a Tafel slope of 72.3 mV·dec<sup>−1</sup>. For OER, at a current density of 10 mA cm<sup>−2</sup>, the overpotential is 273 mV, with a Tafel slope of 88.9 mV·dec<sup>−1</sup>. Moreover, the catalyst shows excellent long-term stability. Density functional theory (DFT) calculations indicate that the incorporation of Ni into CoP alters the electronic states at the Fermi level, thereby improving its electrical conductivity. This work not only offers novel insights into the structural design of water splitting catalysts but also highlights the promising potential of NiCoP as an efficient catalyst in the energy conversion domain.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"192 \",\"pages\":\"Article 109461\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125001982\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125001982","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高效的析氢反应(HER)和析氧反应(OER)电催化剂是克服水电解缓慢动力学的必要条件。在本研究中,通过ZIF-67模板合成了具有独特空心结构的双金属NiCoP催化剂,然后用Ni2+水溶液蚀刻,随后进行磷酸化处理。所得材料表现出优异的电化学性能。在HER中,它表现出优异的催化活性,在电流密度为10 mA cm−2时,过电位为134.6 mV, Tafel斜率为72.3 mV·dec−1。对于OER,在电流密度为10 mA cm−2时,过电位为273 mV,塔菲尔斜率为88.9 mV·dec−1。此外,该催化剂还具有良好的长期稳定性。密度泛函理论(DFT)计算表明,Ni加入到CoP中改变了费米能级的电子态,从而提高了其导电性。这项工作不仅为水分解催化剂的结构设计提供了新的见解,而且突出了NiCoP作为一种高效催化剂在能量转换领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZIF-67-templated NiCoP bimetallic catalysts for enhanced water splitting performance
Efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are essential to overcoming the slow kinetics of water electrolysis. In this study, a bimetallic NiCoP catalyst with a distinctive hollow structure was synthesized via a ZIF-67 template, followed by etching with Ni2+ aqueous solution and a subsequent phosphorization process. The resulting material demonstrates exceptional electrochemical performance. In HER, it exhibits excellent catalytic activity, achieving an overpotential of 134.6 mV at a current density of 10 mA cm−2 and a Tafel slope of 72.3 mV·dec−1. For OER, at a current density of 10 mA cm−2, the overpotential is 273 mV, with a Tafel slope of 88.9 mV·dec−1. Moreover, the catalyst shows excellent long-term stability. Density functional theory (DFT) calculations indicate that the incorporation of Ni into CoP alters the electronic states at the Fermi level, thereby improving its electrical conductivity. This work not only offers novel insights into the structural design of water splitting catalysts but also highlights the promising potential of NiCoP as an efficient catalyst in the energy conversion domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信