{"title":"银河系内星际尘埃消光曲线的三维地图","authors":"Xiangyu Zhang, Gregory M. Green","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Interstellar dust grains cause extinction (absorption and scattering) of light from background astronomical sources. The spectral shape of the extinction curve depends on the dust composition. We used low-resolution optical spectra to measure the extinction curve of 130 million stars. By inverting these data, we mapped the extinction curve parameter <i>R</i>(<i>V</i>) within the Milky Way in three dimensions and within the Magellanic Clouds in two dimensions. These maps provide improved extinction corrections for astronomical observations. We find that <i>R</i>(<i>V</i>) varies with extinction, consistent with dust grains growing by accretion in low-extinction regions and by coagulation in higher-extinction regions. Star-forming regions have high <i>R</i>(<i>V</i>) values, indicating either preferential destruction of small dust grains or additional supply of large dust grains in those regions.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6739","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional maps of the interstellar dust extinction curve within the Milky Way galaxy\",\"authors\":\"Xiangyu Zhang, Gregory M. Green\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Interstellar dust grains cause extinction (absorption and scattering) of light from background astronomical sources. The spectral shape of the extinction curve depends on the dust composition. We used low-resolution optical spectra to measure the extinction curve of 130 million stars. By inverting these data, we mapped the extinction curve parameter <i>R</i>(<i>V</i>) within the Milky Way in three dimensions and within the Magellanic Clouds in two dimensions. These maps provide improved extinction corrections for astronomical observations. We find that <i>R</i>(<i>V</i>) varies with extinction, consistent with dust grains growing by accretion in low-extinction regions and by coagulation in higher-extinction regions. Star-forming regions have high <i>R</i>(<i>V</i>) values, indicating either preferential destruction of small dust grains or additional supply of large dust grains in those regions.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"387 6739\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.ado9787\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.ado9787","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Three-dimensional maps of the interstellar dust extinction curve within the Milky Way galaxy
Interstellar dust grains cause extinction (absorption and scattering) of light from background astronomical sources. The spectral shape of the extinction curve depends on the dust composition. We used low-resolution optical spectra to measure the extinction curve of 130 million stars. By inverting these data, we mapped the extinction curve parameter R(V) within the Milky Way in three dimensions and within the Magellanic Clouds in two dimensions. These maps provide improved extinction corrections for astronomical observations. We find that R(V) varies with extinction, consistent with dust grains growing by accretion in low-extinction regions and by coagulation in higher-extinction regions. Star-forming regions have high R(V) values, indicating either preferential destruction of small dust grains or additional supply of large dust grains in those regions.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.