深度学习南极冰架的流动规律

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-03-13
Yongji Wang, Ching-Yao Lai, David J. Prior, Charlie Cowen-Breen
{"title":"深度学习南极冰架的流动规律","authors":"Yongji Wang,&nbsp;Ching-Yao Lai,&nbsp;David J. Prior,&nbsp;Charlie Cowen-Breen","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Antarctic ice shelves buttress the grounded ice sheet, mitigating global sea level rise. However, fundamental mechanical properties, such as the ice flow law and viscosity structure, remain under debate. In this work, by leveraging remote-sensing data and physics-informed deep learning, we provide evidence over several ice shelves that the flow law follows a grain size–sensitive composite rheology in the compression zone. In the extension zone, we found that ice exhibits anisotropic properties. We constructed ice shelf–wide anisotropic viscosity maps that capture the suture zones, which inhibit rift propagation. The inferred stress exponent near the grounding zone dictates the grounding-line ice flux and grounding line stability, whereas the inferred viscosity maps inform the prediction of rifts. Both are essential for predicting the future mass loss of the Antarctic Ice Sheet.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6739","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning the flow law of Antarctic ice shelves\",\"authors\":\"Yongji Wang,&nbsp;Ching-Yao Lai,&nbsp;David J. Prior,&nbsp;Charlie Cowen-Breen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Antarctic ice shelves buttress the grounded ice sheet, mitigating global sea level rise. However, fundamental mechanical properties, such as the ice flow law and viscosity structure, remain under debate. In this work, by leveraging remote-sensing data and physics-informed deep learning, we provide evidence over several ice shelves that the flow law follows a grain size–sensitive composite rheology in the compression zone. In the extension zone, we found that ice exhibits anisotropic properties. We constructed ice shelf–wide anisotropic viscosity maps that capture the suture zones, which inhibit rift propagation. The inferred stress exponent near the grounding zone dictates the grounding-line ice flux and grounding line stability, whereas the inferred viscosity maps inform the prediction of rifts. Both are essential for predicting the future mass loss of the Antarctic Ice Sheet.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"387 6739\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adp3300\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adp3300","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

南极冰架支撑着地面冰盖,减缓了全球海平面的上升。然而,基本的力学性质,如冰的流动规律和粘度结构,仍然存在争议。在这项工作中,通过利用遥感数据和物理知识的深度学习,我们提供了几个冰架的证据,证明压缩区的流动规律遵循颗粒尺寸敏感的复合流变学。在扩展区,我们发现冰具有各向异性。我们构建了冰架范围的各向异性黏度图,捕捉了抑制裂谷传播的缝合带。在接地带附近推断的应力指数决定了接地线冰通量和接地线稳定性,而推断的粘度图则为裂谷的预测提供了信息。两者对于预测南极冰盖未来的质量损失都是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning the flow law of Antarctic ice shelves
Antarctic ice shelves buttress the grounded ice sheet, mitigating global sea level rise. However, fundamental mechanical properties, such as the ice flow law and viscosity structure, remain under debate. In this work, by leveraging remote-sensing data and physics-informed deep learning, we provide evidence over several ice shelves that the flow law follows a grain size–sensitive composite rheology in the compression zone. In the extension zone, we found that ice exhibits anisotropic properties. We constructed ice shelf–wide anisotropic viscosity maps that capture the suture zones, which inhibit rift propagation. The inferred stress exponent near the grounding zone dictates the grounding-line ice flux and grounding line stability, whereas the inferred viscosity maps inform the prediction of rifts. Both are essential for predicting the future mass loss of the Antarctic Ice Sheet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信