高精度设计高性能TADF发射器与新颖的联锁D-A框架†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aziz Khan, Fan-Cheng Kong, Jamal Kazmi, Sarvendra Kumar, Tim Leydecker and Zhiming Wang
{"title":"高精度设计高性能TADF发射器与新颖的联锁D-A框架†","authors":"Aziz Khan, Fan-Cheng Kong, Jamal Kazmi, Sarvendra Kumar, Tim Leydecker and Zhiming Wang","doi":"10.1039/D4TC05314A","DOIUrl":null,"url":null,"abstract":"<p >Achieving high-performance organic light-emitting diodes (OLEDs) remains a significant challenge, driven by the complex interdependence of charge transport, exciton dynamics, and light-emission processes. We present a novel approach utilizing positional isomerism of boron acceptors at <em>para</em> (<strong><em>p</em>-CZN-B</strong>) and <em>ortho</em> (<strong><em>o</em>-CZN-B</strong>) positions within a rigid donor–acceptor (D–A) framework, precisely combining carbazole as the electron donor and mesityl borane as the acceptor. This positional engineering profoundly influences the photophysical, thermal, and electroluminescent properties of the emitters. The <em>ortho</em>-configured <strong><em>o</em>-CZN-B</strong> demonstrates exceptional separation of HOMO and LUMO levels and a minimized singlet–triplet energy gap (Δ<em>E</em><small><sub>ST</sub></small> = 0.17 eV), enabling sky-blue thermally activated delayed fluorescence (TADF) with an external quantum efficiency (EQE) of 23.3% and a full width at half maximum (FWHM) of 54 nm. Conversely, the <em>para</em>-configured <strong><em>p</em>-CZN-B</strong> exhibits deep-blue fluorescence with an EQE of 2.6%, and CIE coordinates of (0.16, 0.03), surpassing the standard color Rec. 2020 specification of (0.131, 0.046), along with efficient amplified spontaneous emission (ASE) at a low threshold of 5.79 μJ cm<small><sup>−2</sup></small> and an ultranarrow FWHM of 4.7 nm, making it an excellent candidate for organic lasers. This study highlights the role of isomeric acceptor positioning in modulating the electronic and photophysical properties of TADF emitters, achieving notable advancements in OLED efficiency and emission color purity. The findings also provide a strong framework for designing next-generation optoelectronic devices with enhanced performance and tunable functionalities.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 11","pages":" 5624-5632"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision design for high-performance TADF emitters with novel interlock D–A frameworks†\",\"authors\":\"Aziz Khan, Fan-Cheng Kong, Jamal Kazmi, Sarvendra Kumar, Tim Leydecker and Zhiming Wang\",\"doi\":\"10.1039/D4TC05314A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving high-performance organic light-emitting diodes (OLEDs) remains a significant challenge, driven by the complex interdependence of charge transport, exciton dynamics, and light-emission processes. We present a novel approach utilizing positional isomerism of boron acceptors at <em>para</em> (<strong><em>p</em>-CZN-B</strong>) and <em>ortho</em> (<strong><em>o</em>-CZN-B</strong>) positions within a rigid donor–acceptor (D–A) framework, precisely combining carbazole as the electron donor and mesityl borane as the acceptor. This positional engineering profoundly influences the photophysical, thermal, and electroluminescent properties of the emitters. The <em>ortho</em>-configured <strong><em>o</em>-CZN-B</strong> demonstrates exceptional separation of HOMO and LUMO levels and a minimized singlet–triplet energy gap (Δ<em>E</em><small><sub>ST</sub></small> = 0.17 eV), enabling sky-blue thermally activated delayed fluorescence (TADF) with an external quantum efficiency (EQE) of 23.3% and a full width at half maximum (FWHM) of 54 nm. Conversely, the <em>para</em>-configured <strong><em>p</em>-CZN-B</strong> exhibits deep-blue fluorescence with an EQE of 2.6%, and CIE coordinates of (0.16, 0.03), surpassing the standard color Rec. 2020 specification of (0.131, 0.046), along with efficient amplified spontaneous emission (ASE) at a low threshold of 5.79 μJ cm<small><sup>−2</sup></small> and an ultranarrow FWHM of 4.7 nm, making it an excellent candidate for organic lasers. This study highlights the role of isomeric acceptor positioning in modulating the electronic and photophysical properties of TADF emitters, achieving notable advancements in OLED efficiency and emission color purity. The findings also provide a strong framework for designing next-generation optoelectronic devices with enhanced performance and tunable functionalities.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 11\",\"pages\":\" 5624-5632\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05314a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05314a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于电荷输运、激子动力学和光发射过程的复杂相互依赖,实现高性能有机发光二极管(oled)仍然是一个重大挑战。我们提出了一种新的方法,利用硼受体在对位(p-CZN-B)和邻位(o-CZN-B)上的位置异构,在刚性供体-受体(D-A)框架内,精确地结合咔唑作为电子供体和甲氧基硼烷作为受体。这种位置工程深刻地影响了发射体的光物理、热学和电致发光特性。正交配置的o-CZN-B具有HOMO和LUMO能级的分离和最小的单重态-三重态能隙(ΔEST = 0.17 eV),使天蓝热激活延迟荧光(TADF)具有23.3%的外量子效率(EQE)和54 nm的半峰全宽(FWHM)。相反,p-CZN-B具有深蓝色荧光,EQE为2.6%,CIE坐标为(0.16,0.03),超过了Rec. 2020标准色规范(0.131,0.046),具有5.79 μJ cm−2的有效放大自发发射(ASE)和4.7 nm的超宽频宽,使其成为有机激光器的优秀候选材料。本研究强调了同分异构体受体定位在调制TADF发射器的电子和光物理特性中的作用,在OLED效率和发射色纯度方面取得了显着进步。该研究结果还为设计具有增强性能和可调功能的下一代光电器件提供了强有力的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precision design for high-performance TADF emitters with novel interlock D–A frameworks†

Precision design for high-performance TADF emitters with novel interlock D–A frameworks†

Achieving high-performance organic light-emitting diodes (OLEDs) remains a significant challenge, driven by the complex interdependence of charge transport, exciton dynamics, and light-emission processes. We present a novel approach utilizing positional isomerism of boron acceptors at para (p-CZN-B) and ortho (o-CZN-B) positions within a rigid donor–acceptor (D–A) framework, precisely combining carbazole as the electron donor and mesityl borane as the acceptor. This positional engineering profoundly influences the photophysical, thermal, and electroluminescent properties of the emitters. The ortho-configured o-CZN-B demonstrates exceptional separation of HOMO and LUMO levels and a minimized singlet–triplet energy gap (ΔEST = 0.17 eV), enabling sky-blue thermally activated delayed fluorescence (TADF) with an external quantum efficiency (EQE) of 23.3% and a full width at half maximum (FWHM) of 54 nm. Conversely, the para-configured p-CZN-B exhibits deep-blue fluorescence with an EQE of 2.6%, and CIE coordinates of (0.16, 0.03), surpassing the standard color Rec. 2020 specification of (0.131, 0.046), along with efficient amplified spontaneous emission (ASE) at a low threshold of 5.79 μJ cm−2 and an ultranarrow FWHM of 4.7 nm, making it an excellent candidate for organic lasers. This study highlights the role of isomeric acceptor positioning in modulating the electronic and photophysical properties of TADF emitters, achieving notable advancements in OLED efficiency and emission color purity. The findings also provide a strong framework for designing next-generation optoelectronic devices with enhanced performance and tunable functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信