{"title":"人工智能在脑卒中康复中的应用:从急性护理到长期康复。","authors":"Spandana Rajendra Kopalli , Madhu Shukla , B. Jayaprakash , Mayank Kundlas , Ankur Srivastava , Jayant Jagtap , Monica Gulati , Sridevi Chigurupati , Eiman Ibrahim , Prasanna Shama Khandige , Dario Salguero Garcia , Sushruta Koppula , Amin Gasmi","doi":"10.1016/j.neuroscience.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is a leading cause of disability worldwide, driving the need for advanced rehabilitation strategies. The integration of Artificial Intelligence (AI) into stroke rehabilitation presents significant advancements across the continuum of care, from acute diagnosis to long-term recovery. This review explores AI’s role in stroke rehabilitation, highlighting its impact on early diagnosis, motor recovery, and cognitive rehabilitation. AI-driven imaging techniques, such as deep learning applied to CT and MRI scans, improve early diagnosis and identify ischemic penumbra, enabling timely, personalized interventions. AI-assisted decision support systems optimize acute stroke treatment, including thrombolysis and endovascular therapy. In motor rehabilitation, AI-powered robotics and exoskeletons provide precise, adaptive assistance, while AI-augmented Virtual and Augmented Reality environments offer immersive, tailored recovery experiences. Brain-Computer Interfaces utilize AI for neurorehabilitation through neural signal processing, supporting motor recovery. Machine learning models predict functional recovery outcomes and dynamically adjust therapy intensities. Wearable technologies equipped with AI enable continuous monitoring and real-time feedback, facilitating home-based rehabilitation. AI-driven tele-rehabilitation platforms overcome geographic barriers by enabling remote assessment and intervention. The review also addresses the ethical, legal, and regulatory challenges associated with AI implementation, including data privacy and technical integration. Future research directions emphasize the transformative potential of AI in stroke rehabilitation, with case studies and clinical trials illustrating the practical benefits and efficacy of AI technologies in improving patient recovery.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"572 ","pages":"Pages 214-231"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in stroke rehabilitation: From acute care to long-term recovery\",\"authors\":\"Spandana Rajendra Kopalli , Madhu Shukla , B. Jayaprakash , Mayank Kundlas , Ankur Srivastava , Jayant Jagtap , Monica Gulati , Sridevi Chigurupati , Eiman Ibrahim , Prasanna Shama Khandige , Dario Salguero Garcia , Sushruta Koppula , Amin Gasmi\",\"doi\":\"10.1016/j.neuroscience.2025.03.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stroke is a leading cause of disability worldwide, driving the need for advanced rehabilitation strategies. The integration of Artificial Intelligence (AI) into stroke rehabilitation presents significant advancements across the continuum of care, from acute diagnosis to long-term recovery. This review explores AI’s role in stroke rehabilitation, highlighting its impact on early diagnosis, motor recovery, and cognitive rehabilitation. AI-driven imaging techniques, such as deep learning applied to CT and MRI scans, improve early diagnosis and identify ischemic penumbra, enabling timely, personalized interventions. AI-assisted decision support systems optimize acute stroke treatment, including thrombolysis and endovascular therapy. In motor rehabilitation, AI-powered robotics and exoskeletons provide precise, adaptive assistance, while AI-augmented Virtual and Augmented Reality environments offer immersive, tailored recovery experiences. Brain-Computer Interfaces utilize AI for neurorehabilitation through neural signal processing, supporting motor recovery. Machine learning models predict functional recovery outcomes and dynamically adjust therapy intensities. Wearable technologies equipped with AI enable continuous monitoring and real-time feedback, facilitating home-based rehabilitation. AI-driven tele-rehabilitation platforms overcome geographic barriers by enabling remote assessment and intervention. The review also addresses the ethical, legal, and regulatory challenges associated with AI implementation, including data privacy and technical integration. Future research directions emphasize the transformative potential of AI in stroke rehabilitation, with case studies and clinical trials illustrating the practical benefits and efficacy of AI technologies in improving patient recovery.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"572 \",\"pages\":\"Pages 214-231\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452225002180\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225002180","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Artificial intelligence in stroke rehabilitation: From acute care to long-term recovery
Stroke is a leading cause of disability worldwide, driving the need for advanced rehabilitation strategies. The integration of Artificial Intelligence (AI) into stroke rehabilitation presents significant advancements across the continuum of care, from acute diagnosis to long-term recovery. This review explores AI’s role in stroke rehabilitation, highlighting its impact on early diagnosis, motor recovery, and cognitive rehabilitation. AI-driven imaging techniques, such as deep learning applied to CT and MRI scans, improve early diagnosis and identify ischemic penumbra, enabling timely, personalized interventions. AI-assisted decision support systems optimize acute stroke treatment, including thrombolysis and endovascular therapy. In motor rehabilitation, AI-powered robotics and exoskeletons provide precise, adaptive assistance, while AI-augmented Virtual and Augmented Reality environments offer immersive, tailored recovery experiences. Brain-Computer Interfaces utilize AI for neurorehabilitation through neural signal processing, supporting motor recovery. Machine learning models predict functional recovery outcomes and dynamically adjust therapy intensities. Wearable technologies equipped with AI enable continuous monitoring and real-time feedback, facilitating home-based rehabilitation. AI-driven tele-rehabilitation platforms overcome geographic barriers by enabling remote assessment and intervention. The review also addresses the ethical, legal, and regulatory challenges associated with AI implementation, including data privacy and technical integration. Future research directions emphasize the transformative potential of AI in stroke rehabilitation, with case studies and clinical trials illustrating the practical benefits and efficacy of AI technologies in improving patient recovery.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.