一种多功能光学微机电系统逻辑器件,可集成到人工智能应用的可再编程光子电路中

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2025-03-06 DOI:10.1016/j.ijleo.2025.172299
Yashar Gholami , Behnam Saghirzadeh Darki , Mehdi Moradi , Kian Jafari , Mohammad Hossein Moaiyeri
{"title":"一种多功能光学微机电系统逻辑器件,可集成到人工智能应用的可再编程光子电路中","authors":"Yashar Gholami ,&nbsp;Behnam Saghirzadeh Darki ,&nbsp;Mehdi Moradi ,&nbsp;Kian Jafari ,&nbsp;Mohammad Hossein Moaiyeri","doi":"10.1016/j.ijleo.2025.172299","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a multifunctional optical Micro-Electro-Mechanical Systems (MEMS) logic gate that uses an electrostatic comb-drive configuration to perform various logical operations. The proposed device includes a MEMS actuator that converts electrostatic input signals to mechanical displacement. In this design, a microring resonator has been positioned close to a straight waveguide that carries the propagating mode. By adjusting the actuator displacement, the distance between the microring resonator and the waveguide can be varied, causing a change in the transmission spectrum of the waveguide and determining the output logic. This device can perform different logical operations such as NAND, OR, XOR, and NOT operations based on the signals applied to the gate ports, making it ideal for integration into reprogrammable photonic circuits for complex applications such as neural networks. The functional characteristics of the proposed device, including an operating voltage of 30 V, a switching time of 800 ns, and a footprint of 792µm<sup>2</sup>, demonstrate its potential to enable advanced functionalities in PICs.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"327 ","pages":"Article 172299"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multifunctional optical MEMS logic device for integration into reprogrammable photonic circuits for artificial intelligence applications\",\"authors\":\"Yashar Gholami ,&nbsp;Behnam Saghirzadeh Darki ,&nbsp;Mehdi Moradi ,&nbsp;Kian Jafari ,&nbsp;Mohammad Hossein Moaiyeri\",\"doi\":\"10.1016/j.ijleo.2025.172299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a multifunctional optical Micro-Electro-Mechanical Systems (MEMS) logic gate that uses an electrostatic comb-drive configuration to perform various logical operations. The proposed device includes a MEMS actuator that converts electrostatic input signals to mechanical displacement. In this design, a microring resonator has been positioned close to a straight waveguide that carries the propagating mode. By adjusting the actuator displacement, the distance between the microring resonator and the waveguide can be varied, causing a change in the transmission spectrum of the waveguide and determining the output logic. This device can perform different logical operations such as NAND, OR, XOR, and NOT operations based on the signals applied to the gate ports, making it ideal for integration into reprogrammable photonic circuits for complex applications such as neural networks. The functional characteristics of the proposed device, including an operating voltage of 30 V, a switching time of 800 ns, and a footprint of 792µm<sup>2</sup>, demonstrate its potential to enable advanced functionalities in PICs.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"327 \",\"pages\":\"Article 172299\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402625000877\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625000877","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multifunctional optical MEMS logic device for integration into reprogrammable photonic circuits for artificial intelligence applications
This paper presents a multifunctional optical Micro-Electro-Mechanical Systems (MEMS) logic gate that uses an electrostatic comb-drive configuration to perform various logical operations. The proposed device includes a MEMS actuator that converts electrostatic input signals to mechanical displacement. In this design, a microring resonator has been positioned close to a straight waveguide that carries the propagating mode. By adjusting the actuator displacement, the distance between the microring resonator and the waveguide can be varied, causing a change in the transmission spectrum of the waveguide and determining the output logic. This device can perform different logical operations such as NAND, OR, XOR, and NOT operations based on the signals applied to the gate ports, making it ideal for integration into reprogrammable photonic circuits for complex applications such as neural networks. The functional characteristics of the proposed device, including an operating voltage of 30 V, a switching time of 800 ns, and a footprint of 792µm2, demonstrate its potential to enable advanced functionalities in PICs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信