亚细胞蛋白质组学和iPSC模型揭示了阿尔茨海默病轴突病理的可逆机制。

IF 17 Q1 CELL BIOLOGY
Yifei Cai, Jean Kanyo, Rashaun Wilson, Shveta Bathla, Pablo Leal Cardozo, Lei Tong, Shanshan Qin, Lukas A. Fuentes, Iguaracy Pinheiro-de-Sousa, Tram Huynh, Liyuan Sun, Mohammad Shahid Mansuri, Zichen Tian, Hao-Ran Gan, Amber Braker, Hoang Kim Trinh, Anita Huttner, TuKiet T. Lam, Evangelia Petsalaki, Kristen J. Brennand, Angus C. Nairn, Jaime Grutzendler
{"title":"亚细胞蛋白质组学和iPSC模型揭示了阿尔茨海默病轴突病理的可逆机制。","authors":"Yifei Cai, Jean Kanyo, Rashaun Wilson, Shveta Bathla, Pablo Leal Cardozo, Lei Tong, Shanshan Qin, Lukas A. Fuentes, Iguaracy Pinheiro-de-Sousa, Tram Huynh, Liyuan Sun, Mohammad Shahid Mansuri, Zichen Tian, Hao-Ran Gan, Amber Braker, Hoang Kim Trinh, Anita Huttner, TuKiet T. Lam, Evangelia Petsalaki, Kristen J. Brennand, Angus C. Nairn, Jaime Grutzendler","doi":"10.1038/s43587-025-00823-3","DOIUrl":null,"url":null,"abstract":"Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer’s disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration. Axonal spheroids disrupt neural circuits in Alzheimer’s disease. In this study, using subcellular proximity labeling proteomics in human brain and iPSC modeling, the authors link spheroid formation to dysregulated mTOR, cytoskeletal and lipid transport signaling.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 3","pages":"504-527"},"PeriodicalIF":17.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43587-025-00823-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer’s disease\",\"authors\":\"Yifei Cai, Jean Kanyo, Rashaun Wilson, Shveta Bathla, Pablo Leal Cardozo, Lei Tong, Shanshan Qin, Lukas A. Fuentes, Iguaracy Pinheiro-de-Sousa, Tram Huynh, Liyuan Sun, Mohammad Shahid Mansuri, Zichen Tian, Hao-Ran Gan, Amber Braker, Hoang Kim Trinh, Anita Huttner, TuKiet T. Lam, Evangelia Petsalaki, Kristen J. Brennand, Angus C. Nairn, Jaime Grutzendler\",\"doi\":\"10.1038/s43587-025-00823-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer’s disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration. Axonal spheroids disrupt neural circuits in Alzheimer’s disease. In this study, using subcellular proximity labeling proteomics in human brain and iPSC modeling, the authors link spheroid formation to dysregulated mTOR, cytoskeletal and lipid transport signaling.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"5 3\",\"pages\":\"504-527\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43587-025-00823-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-025-00823-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-025-00823-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

营养不良的神经突(也称为轴突球体)在阿尔茨海默病(AD)的淀粉样蛋白沉积物周围发现,它们损害轴突电传导,破坏神经回路,并与AD的严重程度相关。尽管它们很重要,但球体形成的机制仍然不完全清楚。为了解决这个问题,我们开发了一种接近标记方法来揭示人类死后和小鼠大脑中球状体的蛋白质组。此外,我们建立了一个人类诱导多能干细胞(iPSC)衍生的AD模型,可以进行机制研究和光电生理学。这些互补的方法揭示了球状体的亚细胞分子结构,并确定了关键生物过程中的异常,包括蛋白质周转、细胞骨架动力学和脂质转运。值得注意的是,调节这些过程的PI3K/AKT/mTOR通路在球状体中被激活。此外,球体中磷酸化的mTOR水平与人类AD的严重程度相关。值得注意的是,在ipsc来源的神经元和小鼠中,mTOR抑制改善了球体病理。总之,我们的研究为研究神经退行性疾病轴突病理的机制和治疗靶点提供了一个多学科的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer’s disease

Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer’s disease
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer’s disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration. Axonal spheroids disrupt neural circuits in Alzheimer’s disease. In this study, using subcellular proximity labeling proteomics in human brain and iPSC modeling, the authors link spheroid formation to dysregulated mTOR, cytoskeletal and lipid transport signaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信