Hina Aslam , Faisal Albaqami , Najeeb Ur Rehman , Fawad Ali Shah
{"title":"Carvacrol通过nlrp3介导的焦亡和mTOR/Nrf2/ ppar γ依赖的自噬信号通路减轻心肌梗死。","authors":"Hina Aslam , Faisal Albaqami , Najeeb Ur Rehman , Fawad Ali Shah","doi":"10.1016/j.taap.2025.117281","DOIUrl":null,"url":null,"abstract":"<div><div>Myocardial ischemia, also known as myocardial infarction or heart attack, is a significant global health issue and a leading cause of mortality worldwide. The present study focuses on investigating the cardioprotective role of carvacrol on three specific pathways: nuclear factor E2-related factor (Nrf2) / peroxisome proliferator-activated receptor factor (PPARγ)-coupled anti-inflammatory response, inflammasome (NLRP3)-mediated pyroptosis, and mammalian target of rapamycin (mTOR)-dependent autophagic signaling. Male Sprague Dawley rats were divided into three experimental cohorts to determine the best dose for carvacrol (20 mg / kg, 50 mg / kg, and 80 mg/ kg) and the optimum treatment strategy. Our findings showed that isoproterenol raised the production of ROS, induced NLRP3-mediated pyroptosis, and modulated the mTOR-linked signaling cascade. Treatment with carvacrol activated the Nrf2 / HO-1 and PI3K / AKT signaling pathways that led to the reversal of NLRP3 inflammasome. Moreover, the Nrf2 inhibitor all-trans-retinoic acid (ATRA) antagonizes the protective effects of carvacrol and exacerbates myocardial infarction by inducing inflammatory mediators. Taken together, our findings suggest that carvacrol mitigated isoproterenol-induced myocardial ischemia, partially through the activation of Nrf2 and PPARγ and downregulation of NLRP3.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"498 ","pages":"Article 117281"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carvacrol attenuated myocardial infarction through NLRP3-mediated pyroptosis and mTOR/Nrf2/PPARγ-dependent autophagic signaling\",\"authors\":\"Hina Aslam , Faisal Albaqami , Najeeb Ur Rehman , Fawad Ali Shah\",\"doi\":\"10.1016/j.taap.2025.117281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myocardial ischemia, also known as myocardial infarction or heart attack, is a significant global health issue and a leading cause of mortality worldwide. The present study focuses on investigating the cardioprotective role of carvacrol on three specific pathways: nuclear factor E2-related factor (Nrf2) / peroxisome proliferator-activated receptor factor (PPARγ)-coupled anti-inflammatory response, inflammasome (NLRP3)-mediated pyroptosis, and mammalian target of rapamycin (mTOR)-dependent autophagic signaling. Male Sprague Dawley rats were divided into three experimental cohorts to determine the best dose for carvacrol (20 mg / kg, 50 mg / kg, and 80 mg/ kg) and the optimum treatment strategy. Our findings showed that isoproterenol raised the production of ROS, induced NLRP3-mediated pyroptosis, and modulated the mTOR-linked signaling cascade. Treatment with carvacrol activated the Nrf2 / HO-1 and PI3K / AKT signaling pathways that led to the reversal of NLRP3 inflammasome. Moreover, the Nrf2 inhibitor all-trans-retinoic acid (ATRA) antagonizes the protective effects of carvacrol and exacerbates myocardial infarction by inducing inflammatory mediators. Taken together, our findings suggest that carvacrol mitigated isoproterenol-induced myocardial ischemia, partially through the activation of Nrf2 and PPARγ and downregulation of NLRP3.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\"498 \",\"pages\":\"Article 117281\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X25000572\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Carvacrol attenuated myocardial infarction through NLRP3-mediated pyroptosis and mTOR/Nrf2/PPARγ-dependent autophagic signaling
Myocardial ischemia, also known as myocardial infarction or heart attack, is a significant global health issue and a leading cause of mortality worldwide. The present study focuses on investigating the cardioprotective role of carvacrol on three specific pathways: nuclear factor E2-related factor (Nrf2) / peroxisome proliferator-activated receptor factor (PPARγ)-coupled anti-inflammatory response, inflammasome (NLRP3)-mediated pyroptosis, and mammalian target of rapamycin (mTOR)-dependent autophagic signaling. Male Sprague Dawley rats were divided into three experimental cohorts to determine the best dose for carvacrol (20 mg / kg, 50 mg / kg, and 80 mg/ kg) and the optimum treatment strategy. Our findings showed that isoproterenol raised the production of ROS, induced NLRP3-mediated pyroptosis, and modulated the mTOR-linked signaling cascade. Treatment with carvacrol activated the Nrf2 / HO-1 and PI3K / AKT signaling pathways that led to the reversal of NLRP3 inflammasome. Moreover, the Nrf2 inhibitor all-trans-retinoic acid (ATRA) antagonizes the protective effects of carvacrol and exacerbates myocardial infarction by inducing inflammatory mediators. Taken together, our findings suggest that carvacrol mitigated isoproterenol-induced myocardial ischemia, partially through the activation of Nrf2 and PPARγ and downregulation of NLRP3.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.