Yu Ji , Ben-Liang Shu , Zhuo-Er Dong, Bin Wei, Qin-Yi Huang, Lin Zhou, Hua Chai, Hao-Yu Yuan, Yi-Chong Duan, Li-Li Yao, Xiao-Rong Wu
{"title":"利用功能网络聚类和TractSeg方法研究孔源性视网膜脱离的异常白质功能和结构。","authors":"Yu Ji , Ben-Liang Shu , Zhuo-Er Dong, Bin Wei, Qin-Yi Huang, Lin Zhou, Hua Chai, Hao-Yu Yuan, Yi-Chong Duan, Li-Li Yao, Xiao-Rong Wu","doi":"10.1016/j.neuroscience.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>Rhegmatogenous retinal detachment (RRD) has been linked to abnormal functional changes in visual pathways and gray matter regions; however, alterations in white matter (WM) function and structure remain poorly understood. Using functional clustering networks and TractSeg methodologies, we investigated WM alterations in RRD patients and employed Support Vector Machine (SVM) algorithms for classification. RRD patients demonstrated reduced functional covariance connectivity (FCC) between the Superior Temporal Network and the Cerebellar Network, along with increased WM amplitude in the Anterior Corpus Callosum Network. Distinct differences in WM fiber bundles associated with visual and cognitive functions were observed, with visual acuity negatively correlating with amplitudes in the Occipital Networks. The SVM model based on WM7_amplitude achieved the highest AUC, highlighting its potential as a neurobiological marker for distinguishing RRD patients from healthy controls (HCs). These findings reveal critical disruptions in WM functional and structural integrity linked to cognitive and visual deficits in RRD, offering novel insights into the neural mechanisms underlying these impairments.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"575 ","pages":"Pages 36-47"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aberrant white matter function and structure in Rhegmatogenous retinal detachment: A study utilizing functional network clustering and TractSeg methods\",\"authors\":\"Yu Ji , Ben-Liang Shu , Zhuo-Er Dong, Bin Wei, Qin-Yi Huang, Lin Zhou, Hua Chai, Hao-Yu Yuan, Yi-Chong Duan, Li-Li Yao, Xiao-Rong Wu\",\"doi\":\"10.1016/j.neuroscience.2025.03.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rhegmatogenous retinal detachment (RRD) has been linked to abnormal functional changes in visual pathways and gray matter regions; however, alterations in white matter (WM) function and structure remain poorly understood. Using functional clustering networks and TractSeg methodologies, we investigated WM alterations in RRD patients and employed Support Vector Machine (SVM) algorithms for classification. RRD patients demonstrated reduced functional covariance connectivity (FCC) between the Superior Temporal Network and the Cerebellar Network, along with increased WM amplitude in the Anterior Corpus Callosum Network. Distinct differences in WM fiber bundles associated with visual and cognitive functions were observed, with visual acuity negatively correlating with amplitudes in the Occipital Networks. The SVM model based on WM7_amplitude achieved the highest AUC, highlighting its potential as a neurobiological marker for distinguishing RRD patients from healthy controls (HCs). These findings reveal critical disruptions in WM functional and structural integrity linked to cognitive and visual deficits in RRD, offering novel insights into the neural mechanisms underlying these impairments.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"575 \",\"pages\":\"Pages 36-47\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452225002143\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225002143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Aberrant white matter function and structure in Rhegmatogenous retinal detachment: A study utilizing functional network clustering and TractSeg methods
Rhegmatogenous retinal detachment (RRD) has been linked to abnormal functional changes in visual pathways and gray matter regions; however, alterations in white matter (WM) function and structure remain poorly understood. Using functional clustering networks and TractSeg methodologies, we investigated WM alterations in RRD patients and employed Support Vector Machine (SVM) algorithms for classification. RRD patients demonstrated reduced functional covariance connectivity (FCC) between the Superior Temporal Network and the Cerebellar Network, along with increased WM amplitude in the Anterior Corpus Callosum Network. Distinct differences in WM fiber bundles associated with visual and cognitive functions were observed, with visual acuity negatively correlating with amplitudes in the Occipital Networks. The SVM model based on WM7_amplitude achieved the highest AUC, highlighting its potential as a neurobiological marker for distinguishing RRD patients from healthy controls (HCs). These findings reveal critical disruptions in WM functional and structural integrity linked to cognitive and visual deficits in RRD, offering novel insights into the neural mechanisms underlying these impairments.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.