用近红外高光谱成像和化学计量学测绘薯片中的丙烯酰胺含量

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Carlos Miguel Peraza-Alemán , Ainara López-Maestresalas , Carmen Jarén , Jose Ignacio Ruiz de Galarreta , Leire Barandalla , Silvia Arazuri
{"title":"用近红外高光谱成像和化学计量学测绘薯片中的丙烯酰胺含量","authors":"Carlos Miguel Peraza-Alemán ,&nbsp;Ainara López-Maestresalas ,&nbsp;Carmen Jarén ,&nbsp;Jose Ignacio Ruiz de Galarreta ,&nbsp;Leire Barandalla ,&nbsp;Silvia Arazuri","doi":"10.1016/j.foodchem.2025.143794","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (<em>Agria</em> and <em>Jaerla</em>) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R<sup>2</sup><sub>p</sub>: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R<sup>2</sup><sub>p</sub>: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model's accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"479 ","pages":"Article 143794"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics\",\"authors\":\"Carlos Miguel Peraza-Alemán ,&nbsp;Ainara López-Maestresalas ,&nbsp;Carmen Jarén ,&nbsp;Jose Ignacio Ruiz de Galarreta ,&nbsp;Leire Barandalla ,&nbsp;Silvia Arazuri\",\"doi\":\"10.1016/j.foodchem.2025.143794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (<em>Agria</em> and <em>Jaerla</em>) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R<sup>2</sup><sub>p</sub>: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R<sup>2</sup><sub>p</sub>: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model's accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"479 \",\"pages\":\"Article 143794\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625010453\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625010453","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了近红外高光谱成像(NIR-HSI)预测薯片中丙烯酰胺含量的潜力。对两个马铃薯品种(Agria和Jaerla)在两个季节生长并在相同油炸条件下加工的总共300个块茎进行了分析。应用偏最小二乘回归(PLSR)和支持向量机回归(SVMR),结合丙烯酰胺水平的对数变换,建立预测模型。PLSR的最佳结果为R2p: 0.85, RMSEP: 201 μg/kg, RPD: 2.53; SVMR的最佳结果为R2p: 0.80, RMSEP: 229 μg/kg, RPD: 2.22。此外,重要波长的选择使变量减少87.95 %,而不影响模型的准确性。最后,对外部验证集中的所有芯片进行丙烯酰胺含量的空间映射。该方法提供了定量和可视化的能力,从而加强了加工马铃薯中丙烯酰胺鉴定的质量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics
This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model's accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信