Jie Wang, Yanping Ma, Haiping Zhang, Na Li, Hangrui Xu, Yanan Liang, Meiling Luo, Yonghui Wang
{"title":"脑卒中后吞咽困难患者味觉刺激下的吞咽皮层网络特征——来自fNIRS研究的见解。","authors":"Jie Wang, Yanping Ma, Haiping Zhang, Na Li, Hangrui Xu, Yanan Liang, Meiling Luo, Yonghui Wang","doi":"10.1016/j.brainresbull.2025.111287","DOIUrl":null,"url":null,"abstract":"<div><div>The alterations in the swallowing cortical network associated with taste stimulation in patients with post-stroke dysphagia remain unclear. The aim of the study was to investigate the alterations in brain functional activity among individuals with post-stroke dysphagia under taste stimuli using functional near-infrared spectroscopy (fNIRS). We recruited 28 patients with post-stroke dysphagia and 24 age-matched healthy controls in this study. Each of them completed swallowing evaluation, resting-state and swallowing task-related fNIRS test. We found that the brain activation of patients significantly decreased in the left and right supplemental motor area (SMA) for water swallowing task and the left SMA and right primary sensory area (S1) for salty water swallowing, compared with healthy controls, only the left SMA remained significant for salty water swallowing after False Discovery Rate (FDR) correction. Fourteen healthy controls and 13 patients were included in the subgroup analysis, to explore the influences of preferred taste on swallowing network, we observed that the brain activation in the right S1 was significantly reduced during water swallowing in patient group (<em>p</em> = 0.008, with FDR corrected), all channels showed similar strengths in the activation under preferred taste stimulus between the groups. Functional connectivity (FC) between hemispheric sensorimotor areas were significantly decreased in patients compared with healthy controls. Our investigation revealed a noteworthy reduction in the activation of the left SMA during the salty water swallowing task in patients with dysphagia when compared to the healthy control group. The dysphagic patients following stroke exhibited impaired interaction between hemispheric sensorimotor areas associated with swallowing. Sour, sweet, and preferred taste stimulation have the potential to enhance brain plasticity, which may offer new insights for developing novel strategies for post-stroke dysphagia.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"223 ","pages":"Article 111287"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swallowing cortical network features under taste stimulation for patients with post stroke dysphagia—Insights from a fNIRS study\",\"authors\":\"Jie Wang, Yanping Ma, Haiping Zhang, Na Li, Hangrui Xu, Yanan Liang, Meiling Luo, Yonghui Wang\",\"doi\":\"10.1016/j.brainresbull.2025.111287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The alterations in the swallowing cortical network associated with taste stimulation in patients with post-stroke dysphagia remain unclear. The aim of the study was to investigate the alterations in brain functional activity among individuals with post-stroke dysphagia under taste stimuli using functional near-infrared spectroscopy (fNIRS). We recruited 28 patients with post-stroke dysphagia and 24 age-matched healthy controls in this study. Each of them completed swallowing evaluation, resting-state and swallowing task-related fNIRS test. We found that the brain activation of patients significantly decreased in the left and right supplemental motor area (SMA) for water swallowing task and the left SMA and right primary sensory area (S1) for salty water swallowing, compared with healthy controls, only the left SMA remained significant for salty water swallowing after False Discovery Rate (FDR) correction. Fourteen healthy controls and 13 patients were included in the subgroup analysis, to explore the influences of preferred taste on swallowing network, we observed that the brain activation in the right S1 was significantly reduced during water swallowing in patient group (<em>p</em> = 0.008, with FDR corrected), all channels showed similar strengths in the activation under preferred taste stimulus between the groups. Functional connectivity (FC) between hemispheric sensorimotor areas were significantly decreased in patients compared with healthy controls. Our investigation revealed a noteworthy reduction in the activation of the left SMA during the salty water swallowing task in patients with dysphagia when compared to the healthy control group. The dysphagic patients following stroke exhibited impaired interaction between hemispheric sensorimotor areas associated with swallowing. Sour, sweet, and preferred taste stimulation have the potential to enhance brain plasticity, which may offer new insights for developing novel strategies for post-stroke dysphagia.</div></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"223 \",\"pages\":\"Article 111287\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923025000991\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000991","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Swallowing cortical network features under taste stimulation for patients with post stroke dysphagia—Insights from a fNIRS study
The alterations in the swallowing cortical network associated with taste stimulation in patients with post-stroke dysphagia remain unclear. The aim of the study was to investigate the alterations in brain functional activity among individuals with post-stroke dysphagia under taste stimuli using functional near-infrared spectroscopy (fNIRS). We recruited 28 patients with post-stroke dysphagia and 24 age-matched healthy controls in this study. Each of them completed swallowing evaluation, resting-state and swallowing task-related fNIRS test. We found that the brain activation of patients significantly decreased in the left and right supplemental motor area (SMA) for water swallowing task and the left SMA and right primary sensory area (S1) for salty water swallowing, compared with healthy controls, only the left SMA remained significant for salty water swallowing after False Discovery Rate (FDR) correction. Fourteen healthy controls and 13 patients were included in the subgroup analysis, to explore the influences of preferred taste on swallowing network, we observed that the brain activation in the right S1 was significantly reduced during water swallowing in patient group (p = 0.008, with FDR corrected), all channels showed similar strengths in the activation under preferred taste stimulus between the groups. Functional connectivity (FC) between hemispheric sensorimotor areas were significantly decreased in patients compared with healthy controls. Our investigation revealed a noteworthy reduction in the activation of the left SMA during the salty water swallowing task in patients with dysphagia when compared to the healthy control group. The dysphagic patients following stroke exhibited impaired interaction between hemispheric sensorimotor areas associated with swallowing. Sour, sweet, and preferred taste stimulation have the potential to enhance brain plasticity, which may offer new insights for developing novel strategies for post-stroke dysphagia.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.