执行不确定的检查计划

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Shmuel David Alpert;Kiril Solovey;Itzik Klein;Oren Salzman
{"title":"执行不确定的检查计划","authors":"Shmuel David Alpert;Kiril Solovey;Itzik Klein;Oren Salzman","doi":"10.1109/TRO.2025.3548528","DOIUrl":null,"url":null,"abstract":"Autonomous inspection tasks require path-planning algorithms to efficiently gather observations from <italic>points of interest</i> (POIs). However, localization errors in urban environments introduce execution uncertainty, posing challenges to successfully completing such tasks. The existing inspection-planning algorithms do not explicitly address this uncertainty, which can hinder their performance. To overcome this, in this article, we introduce <italic>incremental random inspection-roadmap search (</i><italic><monospace>IRIS</monospace></i><italic>)-under uncertainty</i> (<monospace>IRIS-U<inline-formula><tex-math>$^{2}$</tex-math></inline-formula></monospace>), an inspection-planning algorithm that provides statistical assurances regarding coverage, path length, and collision probability. Our approach builds upon <monospace>IRIS</monospace>—our framework for <italic>deterministic</i>, highly efficient, and provably asymptotically optimal framework. This extension adapts IRIS to uncertain settings using a refined search procedure that estimates POI coverage probabilities through Monte Carlo (MC) sampling. We demonstrate <monospace>IRIS-U<inline-formula><tex-math>$^{2}$</tex-math></inline-formula></monospace> through a case study on bridge inspections, achieving improved expected coverage, reduced collision probability, and increasingly precise statistical guarantees as MC samples grow. In addition, we explore bounded suboptimal solutions to reduce computation time while preserving statistical assurances.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2406-2423"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inspection Planning Under Execution Uncertainty\",\"authors\":\"Shmuel David Alpert;Kiril Solovey;Itzik Klein;Oren Salzman\",\"doi\":\"10.1109/TRO.2025.3548528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous inspection tasks require path-planning algorithms to efficiently gather observations from <italic>points of interest</i> (POIs). However, localization errors in urban environments introduce execution uncertainty, posing challenges to successfully completing such tasks. The existing inspection-planning algorithms do not explicitly address this uncertainty, which can hinder their performance. To overcome this, in this article, we introduce <italic>incremental random inspection-roadmap search (</i><italic><monospace>IRIS</monospace></i><italic>)-under uncertainty</i> (<monospace>IRIS-U<inline-formula><tex-math>$^{2}$</tex-math></inline-formula></monospace>), an inspection-planning algorithm that provides statistical assurances regarding coverage, path length, and collision probability. Our approach builds upon <monospace>IRIS</monospace>—our framework for <italic>deterministic</i>, highly efficient, and provably asymptotically optimal framework. This extension adapts IRIS to uncertain settings using a refined search procedure that estimates POI coverage probabilities through Monte Carlo (MC) sampling. We demonstrate <monospace>IRIS-U<inline-formula><tex-math>$^{2}$</tex-math></inline-formula></monospace> through a case study on bridge inspections, achieving improved expected coverage, reduced collision probability, and increasingly precise statistical guarantees as MC samples grow. In addition, we explore bounded suboptimal solutions to reduce computation time while preserving statistical assurances.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"2406-2423\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10914554/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10914554/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自主检测任务需要路径规划算法来有效地从感兴趣点(poi)收集观测结果。然而,城市环境中的定位误差带来了执行的不确定性,给成功完成此类任务带来了挑战。现有的检查规划算法没有明确地解决这种不确定性,这可能会阻碍它们的性能。为了克服这一点,在本文中,我们引入了不确定性下的增量随机检查路线图搜索(IRIS),这是一种检查规划算法,提供了关于覆盖率、路径长度和碰撞概率的统计保证。我们的方法建立在iris -我们的确定性,高效,可证明的渐近最优框架的框架。这个扩展使IRIS适应不确定的设置,使用一个精炼的搜索程序,通过蒙特卡洛(MC)采样估计POI覆盖概率。我们通过一个桥梁检查的案例研究来证明IRIS-U$ $ $,随着MC样本的增长,它实现了更高的预期覆盖率、更低的碰撞概率和更精确的统计保证。此外,我们探讨了有界次优解决方案,以减少计算时间,同时保持统计保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inspection Planning Under Execution Uncertainty
Autonomous inspection tasks require path-planning algorithms to efficiently gather observations from points of interest (POIs). However, localization errors in urban environments introduce execution uncertainty, posing challenges to successfully completing such tasks. The existing inspection-planning algorithms do not explicitly address this uncertainty, which can hinder their performance. To overcome this, in this article, we introduce incremental random inspection-roadmap search (IRIS)-under uncertainty (IRIS-U$^{2}$), an inspection-planning algorithm that provides statistical assurances regarding coverage, path length, and collision probability. Our approach builds upon IRIS—our framework for deterministic, highly efficient, and provably asymptotically optimal framework. This extension adapts IRIS to uncertain settings using a refined search procedure that estimates POI coverage probabilities through Monte Carlo (MC) sampling. We demonstrate IRIS-U$^{2}$ through a case study on bridge inspections, achieving improved expected coverage, reduced collision probability, and increasingly precise statistical guarantees as MC samples grow. In addition, we explore bounded suboptimal solutions to reduce computation time while preserving statistical assurances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信