IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Sen Mei, Liangyu Zhang, Yajie Li, Xiaoqian Zhang, Weili Li, Tao Wu
{"title":"Machine learning-based exploration of Umami peptides in Pixian douban: Insights from virtual screening, molecular docking, and post-translational modifications","authors":"Sen Mei, Liangyu Zhang, Yajie Li, Xiaoqian Zhang, Weili Li, Tao Wu","doi":"10.1016/j.foodchem.2025.143672","DOIUrl":null,"url":null,"abstract":"Pixian Doubanjiang (PXDB)'s distinctive umami profile is primarily attributed to its unique peptides; however, their structural characteristics, sensory mechanisms, and biosynthetic pathways during aging remain poorly understood. This study employed a machine learning-based approach to investigate umami peptides in 1–2 year aged PXDB. We identified 117 peptides, predicting 69 with umami potential. Sensory analysis confirmed VEGGLR's remarkably low umami threshold (0.22 mmol/L). Molecular docking further elucidated VEGGLR's interaction with T1R1/T1R3 receptors via salt bridges and hydrogen bonds, enhancing umami perception. Observed post-translational modifications, including phosphorylation and acetylation on protein N6U2M1/N6UWT4, suggest a potential regulatory role in umami peptide biosynthesis. These findings offer key molecular insights into PXDB umami development, enhancing our understanding of its flavor chemistry.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"30 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143672","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

郫县豆瓣酱(PXDB)独特的鲜味特征主要归功于其独特的多肽;然而,人们对其结构特征、感官机制以及老化过程中的生物合成途径仍然知之甚少。本研究采用了一种基于机器学习的方法来研究 1-2 年陈化 PXDB 中的鲜味肽。我们鉴定了 117 种肽,预测其中 69 种具有鲜味潜力。感官分析证实 VEGGLR 的鲜味阈值非常低(0.22 mmol/L)。分子对接进一步阐明了 VEGGLR 通过盐桥和氢键与 T1R1/T1R3 受体的相互作用,从而增强了鲜味感知。观察到的翻译后修饰(包括蛋白质 N6U2M1/N6UWT4 上的磷酸化和乙酰化)表明,VEGGLR 在鲜味肽的生物合成过程中发挥着潜在的调控作用。这些发现为 PXDB 味觉发展提供了关键的分子见解,加深了我们对其风味化学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-based exploration of Umami peptides in Pixian douban: Insights from virtual screening, molecular docking, and post-translational modifications

Machine learning-based exploration of Umami peptides in Pixian douban: Insights from virtual screening, molecular docking, and post-translational modifications
Pixian Doubanjiang (PXDB)'s distinctive umami profile is primarily attributed to its unique peptides; however, their structural characteristics, sensory mechanisms, and biosynthetic pathways during aging remain poorly understood. This study employed a machine learning-based approach to investigate umami peptides in 1–2 year aged PXDB. We identified 117 peptides, predicting 69 with umami potential. Sensory analysis confirmed VEGGLR's remarkably low umami threshold (0.22 mmol/L). Molecular docking further elucidated VEGGLR's interaction with T1R1/T1R3 receptors via salt bridges and hydrogen bonds, enhancing umami perception. Observed post-translational modifications, including phosphorylation and acetylation on protein N6U2M1/N6UWT4, suggest a potential regulatory role in umami peptide biosynthesis. These findings offer key molecular insights into PXDB umami development, enhancing our understanding of its flavor chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信