蜗牛在虚拟现实中模拟抓取软硬物体的可穿戴驱动道具。

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Justine Saint-Aubert
{"title":"蜗牛在虚拟现实中模拟抓取软硬物体的可穿戴驱动道具。","authors":"Justine Saint-Aubert","doi":"10.1109/TOH.2025.3548478","DOIUrl":null,"url":null,"abstract":"<p><p>The Snail is a wearable haptic interface that enables users to experience force feedback when grasping objects in Virtual Reality. It consists of a 3D-printed prop attached to the tip of the thumb that can rotate thanks to a small actuator. The prop is shaped like a snail to display different grasping sizes, ranging from to , according to its orientation. The prop displays the force feedback, so forces over can be displayed between fingers using small and low-power actuation. Very rigid objects can be rendered when the prop remains static, but rotations when the users grasp the prop also allow for the simulation of soft objects. The Snail is portable, low-cost, and easy to reproduce because it is made of 3D-printed parts. The design and performance of the device were evaluated through technical evaluations and 3 user experiments. They show that participants can discriminate different grasping sizes and levels of softness with the interface. The Snail also enhances user experience and performances in Virtual Reality compared to standard vibration feedback.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Snail: A Wearable Actuated Prop to Simulate Grasp of Rigid and Soft Objects in Virtual Reality.\",\"authors\":\"Justine Saint-Aubert\",\"doi\":\"10.1109/TOH.2025.3548478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Snail is a wearable haptic interface that enables users to experience force feedback when grasping objects in Virtual Reality. It consists of a 3D-printed prop attached to the tip of the thumb that can rotate thanks to a small actuator. The prop is shaped like a snail to display different grasping sizes, ranging from to , according to its orientation. The prop displays the force feedback, so forces over can be displayed between fingers using small and low-power actuation. Very rigid objects can be rendered when the prop remains static, but rotations when the users grasp the prop also allow for the simulation of soft objects. The Snail is portable, low-cost, and easy to reproduce because it is made of 3D-printed parts. The design and performance of the device were evaluated through technical evaluations and 3 user experiments. They show that participants can discriminate different grasping sizes and levels of softness with the interface. The Snail also enhances user experience and performances in Virtual Reality compared to standard vibration feedback.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2025.3548478\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3548478","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Snail: A Wearable Actuated Prop to Simulate Grasp of Rigid and Soft Objects in Virtual Reality.

The Snail is a wearable haptic interface that enables users to experience force feedback when grasping objects in Virtual Reality. It consists of a 3D-printed prop attached to the tip of the thumb that can rotate thanks to a small actuator. The prop is shaped like a snail to display different grasping sizes, ranging from to , according to its orientation. The prop displays the force feedback, so forces over can be displayed between fingers using small and low-power actuation. Very rigid objects can be rendered when the prop remains static, but rotations when the users grasp the prop also allow for the simulation of soft objects. The Snail is portable, low-cost, and easy to reproduce because it is made of 3D-printed parts. The design and performance of the device were evaluated through technical evaluations and 3 user experiments. They show that participants can discriminate different grasping sizes and levels of softness with the interface. The Snail also enhances user experience and performances in Virtual Reality compared to standard vibration feedback.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信