{"title":"结合深度神经网络的动作解码框架,从诱发的大脑活动中预测视频中人类动作的语义。","authors":"Yuanyuan Zhang, Manli Tian, Baolin Liu","doi":"10.3389/fninf.2025.1526259","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recently, numerous studies have focused on the semantic decoding of perceived images based on functional magnetic resonance imaging (fMRI) activities. However, it remains unclear whether it is possible to establish relationships between brain activities and semantic features of human actions in video stimuli. Here we construct a framework for decoding action semantics by establishing relationships between brain activities and semantic features of human actions.</p><p><strong>Methods: </strong>To effectively use a small amount of available brain activity data, our proposed method employs a pre-trained image action recognition network model based on an expanding three-dimensional (X3D) deep neural network framework (DNN). To apply brain activities to the image action recognition network, we train regression models that learn the relationship between brain activities and deep-layer image features. To improve decoding accuracy, we join by adding the nonlocal-attention mechanism module to the X3D model to capture long-range temporal and spatial dependence, proposing a multilayer perceptron (MLP) module of multi-task loss constraint to build a more accurate regression mapping approach and performing data enhancement through linear interpolation to expand the amount of data to reduce the impact of a small sample.</p><p><strong>Results and discussion: </strong>Our findings indicate that the features in the X3D-DNN are biologically relevant, and capture information useful for perception. The proposed method enriches the semantic decoding model. We have also conducted several experiments with data from different subsets of brain regions known to process visual stimuli. The results suggest that semantic information for human actions is widespread across the entire visual cortex.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1526259"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880012/pdf/","citationCount":"0","resultStr":"{\"title\":\"An action decoding framework combined with deep neural network for predicting the semantics of human actions in videos from evoked brain activities.\",\"authors\":\"Yuanyuan Zhang, Manli Tian, Baolin Liu\",\"doi\":\"10.3389/fninf.2025.1526259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Recently, numerous studies have focused on the semantic decoding of perceived images based on functional magnetic resonance imaging (fMRI) activities. However, it remains unclear whether it is possible to establish relationships between brain activities and semantic features of human actions in video stimuli. Here we construct a framework for decoding action semantics by establishing relationships between brain activities and semantic features of human actions.</p><p><strong>Methods: </strong>To effectively use a small amount of available brain activity data, our proposed method employs a pre-trained image action recognition network model based on an expanding three-dimensional (X3D) deep neural network framework (DNN). To apply brain activities to the image action recognition network, we train regression models that learn the relationship between brain activities and deep-layer image features. To improve decoding accuracy, we join by adding the nonlocal-attention mechanism module to the X3D model to capture long-range temporal and spatial dependence, proposing a multilayer perceptron (MLP) module of multi-task loss constraint to build a more accurate regression mapping approach and performing data enhancement through linear interpolation to expand the amount of data to reduce the impact of a small sample.</p><p><strong>Results and discussion: </strong>Our findings indicate that the features in the X3D-DNN are biologically relevant, and capture information useful for perception. The proposed method enriches the semantic decoding model. We have also conducted several experiments with data from different subsets of brain regions known to process visual stimuli. The results suggest that semantic information for human actions is widespread across the entire visual cortex.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"19 \",\"pages\":\"1526259\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2025.1526259\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1526259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An action decoding framework combined with deep neural network for predicting the semantics of human actions in videos from evoked brain activities.
Introduction: Recently, numerous studies have focused on the semantic decoding of perceived images based on functional magnetic resonance imaging (fMRI) activities. However, it remains unclear whether it is possible to establish relationships between brain activities and semantic features of human actions in video stimuli. Here we construct a framework for decoding action semantics by establishing relationships between brain activities and semantic features of human actions.
Methods: To effectively use a small amount of available brain activity data, our proposed method employs a pre-trained image action recognition network model based on an expanding three-dimensional (X3D) deep neural network framework (DNN). To apply brain activities to the image action recognition network, we train regression models that learn the relationship between brain activities and deep-layer image features. To improve decoding accuracy, we join by adding the nonlocal-attention mechanism module to the X3D model to capture long-range temporal and spatial dependence, proposing a multilayer perceptron (MLP) module of multi-task loss constraint to build a more accurate regression mapping approach and performing data enhancement through linear interpolation to expand the amount of data to reduce the impact of a small sample.
Results and discussion: Our findings indicate that the features in the X3D-DNN are biologically relevant, and capture information useful for perception. The proposed method enriches the semantic decoding model. We have also conducted several experiments with data from different subsets of brain regions known to process visual stimuli. The results suggest that semantic information for human actions is widespread across the entire visual cortex.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.