{"title":"Advances in catalyst design and reaction strategies for carbon-neutral conversion of bioglycerol to propylene, 1,2-propanediol, and hydrogen","authors":"M. El Doukkali, F. Dumeignil","doi":"10.1002/aocs.12910","DOIUrl":null,"url":null,"abstract":"<p>The inevitable depletion of fossil resources and the resulting anthropogenic climate change require a shift towards renewable feedstocks and eco-friendly technologies for greener energy, fuel, and chemicals production. This mini-review highlights our relevant research contributions to advance the production of carbon-neutral propylene, 1,2-propanediol and biohydrogen through thermo-chemical conversion of biomass-derived glycerol, using various heterogeneous catalysts. These achievements, recently recognized by the “<i>ACI/NBB Glycerine Innovation Award</i>,” are organized into shared sections: (i) economic and environmental benefits of utilizing surplus bioglycerol, as feedstock, (ii) strategies to improve the properties of transition metals-based catalysts (e.g., Pt, Pd, Ni, Cu or Mo supported on γ-Al<sub>2</sub>O3 or SiO<sub>2</sub>) for glycerol conversion via: steam reforming, aqueous-phase reforming, hydrogenolysis, and hydrodeoxygenation reactions, (iii) discussion on the catalytic roles of metallic, acidic and/or redox sites, and keys factors affecting catalyst stability and selectivity in these reactions operated under H<sub>2</sub>O-rich conditions, and (iv) assessment of reaction configurations and operating conditions for improved glycerol conversion into the target product, H<sub>2</sub> utilization efficiency and CO<sub>2</sub> emissions. The insights aim to guide the continuous improvement of bioglycerol upgrading processes.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 3","pages":"483-508"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12910","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Advances in catalyst design and reaction strategies for carbon-neutral conversion of bioglycerol to propylene, 1,2-propanediol, and hydrogen
The inevitable depletion of fossil resources and the resulting anthropogenic climate change require a shift towards renewable feedstocks and eco-friendly technologies for greener energy, fuel, and chemicals production. This mini-review highlights our relevant research contributions to advance the production of carbon-neutral propylene, 1,2-propanediol and biohydrogen through thermo-chemical conversion of biomass-derived glycerol, using various heterogeneous catalysts. These achievements, recently recognized by the “ACI/NBB Glycerine Innovation Award,” are organized into shared sections: (i) economic and environmental benefits of utilizing surplus bioglycerol, as feedstock, (ii) strategies to improve the properties of transition metals-based catalysts (e.g., Pt, Pd, Ni, Cu or Mo supported on γ-Al2O3 or SiO2) for glycerol conversion via: steam reforming, aqueous-phase reforming, hydrogenolysis, and hydrodeoxygenation reactions, (iii) discussion on the catalytic roles of metallic, acidic and/or redox sites, and keys factors affecting catalyst stability and selectivity in these reactions operated under H2O-rich conditions, and (iv) assessment of reaction configurations and operating conditions for improved glycerol conversion into the target product, H2 utilization efficiency and CO2 emissions. The insights aim to guide the continuous improvement of bioglycerol upgrading processes.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.